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Abstract

Following [5], we prove that the sumset of sufficiently large subsets of {1, 2, ..., N} contain an
arithmetic progression of length at least exp(c(logN)1/2) for some absolute constant c. The
proof uses Fourier analysis and some probabilistic estimates, and Chang’s lemma on the large
spectrum of a set.

1. Introduction

Since convolution is in some sense a “smoothing” operation and the sumset operation is
essentially taking the convolution of the indicator functions of two sets, it seems reasonable to
expect sumsets to contain more structure than arbitrary sets. Bogolyubov-type theorems, for
instance, make this intuition precise. As a manifestation of this phenomenon, Green [5] proved
the following:

Theorem 1.1. (Green) There are absolute constants c, c′ > 0 such that the following holds:
Let C,D ⊆ {1, 2, ..., N} with |C| = γN, |D| = δN. Then the sumset C + D contains an arithmetic
progression of length at least exp(c((γδ logN)1/2 − c′ log logN)).

Remark 1. Earlier, Bourgain [1] had proved the same result with 1/3 in place of 1/2.
Later, Croot,  Laba and Sisask [3] proved the same result as Green [5] by the machinery of
almost-periodicity which later found many more applications in additive combinatorics.

Remark 2. Due to a construction of Ruzsa [9], one cannot hope for a larger number than
2/3 in place of 1/2. As far as I know, the exponent 1/2 has not been improved.

1.1. Understanding the “numerology”

In this short section we give a non-rigorous interpretation of the bound given by the main
theorem.

It can be observed that we can “ignore” the − log logN term. Assume N has k digits. Then a
short calculation (remembering that ek has, up to a constant factor, k digits) gives an arithmetic
progression whose length has c(γδ)1/2k1/2 digits. Regarding γ and δ as constants, this means
that in the sumset of sufficiently dense sets (we need this because of the − log logN term, this
issue will be dealt with later in a more precise manner) in {1, 2, ..., 10k}, we can find APs of

length c10
√

k.

1.2. Definitions, notation and basic facts of Fourier analysis in Z/nZ
Here we fix some notation and record several facts about Fourier analysis in Z/nZ (henceforth

denoted by G), mainly to fix the summing/averaging conventions. In particular, we always
average in the physical space and sum in the Fourier space.

For convenience, we regard N as fixed and write ω = e2πi/N . We write E as shorthand for
1

|G|
∑

. If confusion can arise, we use the latter (this will be the case in the part where we prove

Rudin’s inequality).
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We define the averaging and summing inner products as ⟨f, g⟩L2 = Ex∈Gf(x)g(x), ⟨f, g⟩ℓ2 =∑
r∈G f(x)g(x). As noted before, we use the former mainly in the physical space and the latter

mainly in the Fourier space.
Throughout, we identify sets with their characteristic functions. We define the Fourier trans-

form as f̂(r) = Ex∈Gf(x)ω−rx, and the convolution of two functions as f ∗ g(x) = Ey∈Gf(y)g(x−
y). We now record several facts.

Proposition 1.2. (Fourier analysis in G) Let f, g : G → C be two functions. Then the
following statements hold:

(i) (Fourier inversion) f(x) =
∑

r∈G f̂(r)ωrx

(ii) (Plancherel) Ex∈Gf(x)g(x) =
∑

r∈G f̂(r)ĝ(r)

(iii) (Convolution identity) f̂ ∗ g(r) = f̂(r)ĝ(r)

We record the special case of Plancherel with f = g often, which we call Parseval, in the form
∥f∥L2 = ∥f̂∥ℓ2 . With the same notation we define the p-norms ∥f∥Lp and ∥f̂∥ℓp . We may shorten
∥f∥Lp to ∥f∥p for convenience.

For a set Γ ⊆ G, we define the Bohr set B(Γ, ϵ) with width ϵ as {x ∈ G : ∥ rx
N
∥R/Z ≤ ϵ for all

r ∈ Γ}, where the “norm” denotes the distance to the nearest integer. Bohr sets contain large
APs, and also are somewhat rigid under linear combinations with small coefficients because of
the triangle inequality. The latter heuristic fact is used in the last step of the proof of the first.

Lemma 1.3. (Bohr set contains a long AP) If |Γ| = d, then B(Γ, ϵ) contains an AP with
length at least ϵN1/d.

Proof. This is a simple pigeonholing argument. We give the details for completeness. Consider
Rd/NZd and let x = (γ1, γ2, . . . , γd) (where γj are all the elements of Γ) in this space. Consider
closed cubes of side length N1−1/d centered at the points 0, x, 2x, . . . , (N − 1)x. The volume of
these cubes sum to Nd. Assume for contradiction that the cubes are pairwise disjoint. Then, since
they are compact, they are separated, so the volume of Rd/NZd becomes larger than Nd, which
is absurd. Therefore there is a pair of cubes which intersect, which means there is a pair n,m and
a point u = (u1, . . . , ud) such that |uj − nxj |, |uj −mxj | ≤ N1−1/d/2 for all j (where distances
are taken in R/N), so by triangle inequality |(n−m)xj | ≤ N1−1/d for all j. Remembering the
definition of x, this means there exists some r = n−m ̸= 0 ∈ G such that ∥ rγi

N
∥R/Z ≤ N−1/d for

all i.
Let M = ⌊ϵN1/d⌋, P = {−Mr, . . . ,−r, 0, r, . . . ,Mr}. We claim that P ⊆ B(Γ, ϵ). Indeed, for

any γ ∈ Γ and kr ∈ P , we have ∥ krγ
N

∥R/Z ≤ ⌊ϵN1/d⌋∥ rγi
N

∥R/Z ≤ ⌊ϵN1/d⌋N−1/d ≤ ϵ. Since P is

an AP and |P | = 2M + 1 ≥ ϵN1/d, this completes the proof.

1.3. Brief outline of the argument and preliminary reductions

The main technical result of [5] states that if all subsets of a set have a large nontrivial Fourier
coefficient, then the complement of this set contains a long AP. This is connected to Theorem
1.1 by a short Fourier analytic argument showing that the complement of a sumset satisfies this
condition, so the sumset contains a long AP.

The proof of the technical result goes roughly as follows: If a subset of appropriate size of
the set in question minimizes the size of its largest nontrivial Fourier coefficient, unless the
complement of the set contains a long AP, we can “play with the subset randomly” and get a
subset with smaller largest nontrivial Fourier coefficient, which is a contradiction.

Actually this is not exactly how it is done. Rather, we assume we can “play with the subset
randomly” to get a smaller largest nontrivial FC, and show that this implies there is no long
AP in the complement. However it can be seen that these two approaches are equivalent, since
they are contrapositives of each other. I am not sure how one would think of approaching this
problem in this way.



FINDING ARITHMETIC PROGRESSIONS IN SUMSETS Page 3 of 11

We now give a precise statement of the main technical result, and prove Theorem 1.1 assuming
it. A set A ⊆ G is called α-hereditarily non-uniform (α-HNU for short) if for all subsets S of
A, we have supr ̸=0 |Ŝ(r)| ≥ α|S|/N . Since Fourier coefficients of S are bounded by |S|/N , this
heuristically means all subsets of A are “at least α fraction of being as non-uniform as possible”.
The result concerning these sets is as follows:

Theorem 1.4. There exists absolute constants c, c′ > 0 such that the following holds: Assume
that A ⊆ G is α-HNU with α ≥ c log logN/(logN)1/2. Then Ac (the complement of A) contains

an AP of length at least ec
′α

√
logN .

Remark 3. Carrying out the calculations carefully, some admissible pair of c, c′ is in the
range 108 < c < 1010, 10−8 > c′ > 10−10.

We now give the short Fourier analytic argument connecting 1.4 and sumsets.

Lemma 1.5. Let C,D ⊆ G with |C| = γN , |D| = δN . Then (C + D)c is
√
γδ-HNU.

Proof. Let S ⊆ (C + D)c. Then, since S and C + D are disjoint, Ex∈GS(x)(C ∗D)(x) = 0.

By Plancherel and convolution identity, we obtain
∑

r∈G Ŝ(r)Ĉ(r)D̂(r) = 0. Separating this into
r = 0 and r ̸= 0 and using the fact that the trivial Fourier coefficient of an indicator function of
a set is its density (also noting that it is real-valued and positive, so it equals its conjugate), we
obtain

|S|γδ
N

=
|S||C||D|

N3
= Ŝ(0)Ĉ(0)D̂(0) =

∣∣∣∣∑
r ̸=0

Ŝ(r)Ĉ(r)D̂(r)

∣∣∣∣ ≤ ∑
r ̸=0

|Ŝ(r)||Ĉ(r)||D̂(r)|.

≤ sup
r ̸=0

|Ŝ(r)|
∑
r

|Ĉ(r)||D̂(r)|

≤ sup
r ̸=0

|Ŝ(r)|∥Ĉ∥ℓ2∥D̂∥ℓ2

= sup
r ̸=0

|Ŝ(r)|∥C∥L2∥D∥L2

= sup
r ̸=0

|Ŝ(r)|
√

γδ,

where we used Cauchy-Schwarz and Parseval in the third-to-last and second-to-last lines.
Rearranging, this gives the desired result.

Proof of Theorem 1.1 assuming Theorem 1.4 and Lemma 1.5. Embed C and D in Z/(6N +
1)Z. Then the densities of C and D are ≥ γ/7, δ/7. By Lemma 1.5, (C + D)c is γδ/7-HNU. Now
Theorem 1.4 gives us the following dichotomy: Either γδ < 7c(log log 7N)2/ log 7N , or C + D

contains an AP of length at least ec
′√γδ log 7N/7. Since log 7N and logN are of the same order,

we can replace the 7N ’s appearing with N ’s at the expense of slightly increasing c and decreasing
c′.

Now let us investigate the bounds we obtained more carefully. If
√
γδ logN < c log logN , then

we do not have any nontrivial information, and if this is not the case, then we have an AP of
length ≥ ec

′√γδ logN . Putting these together without the condition on γ and δ requires us to
offset the first case (and lose some lower-order terms in the process), and this is exactly what
the statement of Theorem 1.1 does: If γδ is too small, we do not get anything, and if it is large,
we get a long AP.

Theorem 1.1 follows from observing that an AP in C + D ⊆ {1, 2, . . . , 2N} ⊆ Z/(6N + 1)Z is
an AP in Z by Freiman isomorphism considerations.
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2. Probabilistic preliminaries: Bernstein’s inequality

In this section we establish a “large deviation inequality”, which originates from Bernstein (I
have not been able to precisely locate where it was first proven, because of language barriers),
although we will follow the proof in [7].

The inequality heuristically states that the sum of independent random variables is close to
their mean with high probability. Precisely,

Theorem 2.1. (Bernstein) Assume that X1, . . . , Xn are R-valued independent random
variables with EXi = 0, E|Xi|2 = σ2

i , σ
2 = σ2

1 + . . . + σ2
n, |Xi| ≤ 1 uniformly in i, then

P(|X| ≥ t) ≤ 2 exp

(
− nt2

2σ2

n
+ 2t/3

)
.

We will use the following consequence of this inequality:

Corollary 2.2. Assume that X1, . . . , Xn are C-valued independent random variables with
EXi = 0, E|Xi|2 = σ2

i , σ
2 = σ2

1 + . . . + σ2
n, |Xi| ≤ 1 uniformly in i, and σ2 ≥ 6nt, then

P(|X| ≥ t) ≤ 4 exp

(
− n2t2

8σ2

)
.

Proof of Corollary 2.2 assuming Theorem 2.1. Re(X1), . . . ,Re(Xn), and Im(X1), . . . , Im(Xn)
are R-valued independent random variables with mean zero and are uniformly bounded by
1. Let E|Re(Xi)|2 = σ2

i,1 and E| Im(Xi)|2 = σ2
i,2. Observe that σ2

i = σ2
i,1 + σ2

i,2 by linearity of
expectation. Let σ2

re =
∑

σ2
i,1 and σ2

im =
∑

σ2
i,2. Then σ2 = σ2

re + σ2
im. By simple geometric

considerations, P(|X| ≥ t) ≤ P(|Re(X)| ≥ t/
√

2) + P(| Im(X)| ≥ t/
√

2), so by Bernstein, we have

P(|X| ≥ t) ≤ 2 exp

(
− nt2

4σ2
re
n

+ 4t/3

)
+ 2 exp

(
− nt2

4σ2
im
n

+ 4t/3

)
. (2.1)

Let σmax = max(σre, σim), so that σ2
max ≥ 3nt. Then 4t/3 ≤ 4σ2

max/9n, so (after some calcula-
tion)

(2.1) ≤ 4 exp

(
− 9n2t2

40σ2
max

)
≤ 4 exp

(
− 9n2t2

40σ2

)
≤ 4 exp

(
− n2t2

8σ2

)
, (2.2)

as claimed.

We now prove Theorem 2.1. I have to admit I do not know exactly what is going on in this
proof, but the calculations work. We begin with a preliminary lemma.

Lemma 2.3. Let X be a real-valued random variable bounded by 1 with mean zero and

variance σ2. Then for any z > 0, we have E(ezX) ≤ eσ
2(ez−z−1).

Proof. Let F =
∑

r≥2
zr−2E(Xr)

r!σ2 . Then, by Taylor, E(ezX) = E(1 + zX + z2σ2F )

≤ 1 + z2σ2F ≤ exp(z2σ2F ). For r ≥ 2, since X is bounded by 1, E(Xr) = E(Xr−2X2) ≤ σ2.

Therefore F ≤
∑

r≥2
zr−2

r!
= ez−1−z

z2
. Rearranging, we obtain the desired result.

Proof of Bernstein’s inequality. Observe that it suffices to prove that

P(X ≥ t) ≤ exp

(
− nt2

2σ2

n
+ 2t/3

)
,

since then we can apply this to −X and obtain Theorem 2.1.
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By the previous lemma, we have E(ezXi) ≤ expσ2
i (ez − z − 1). Thus, by Markov’s inequality

and independence we have

P(X ≥ t) = P(
∑

Xi ≥ nt) = P(exp(z
∑

Xi) ≥ enzt) ≤ e−nztE exp(z
∑

Xi)

= e−nzt
∏

E exp(zXi) ≤ e−nzt
∏

exp(σ2
i (ez − z − 1))

= e−nzt exp(σ2(ez − z − 1)).

This holds for all z > 0. We take z = log(1 + tn/σ2). Expanding out everything, we see
that P(X ≥ t) ≤ exp(−σ2h(nt/σ2)), where h(u) = log(1 + u) + u log(1 + u) − u. Observing the
graphs, we see that h(u) ≥ u2/(2 + 2u/3), which finishes the proof after expanding out everything
again.

3. Analytic and combinatorial preliminaries: Rudin’s inequality and Chang’s lemma

In this section we prove Chang’s lemma on the large spectrum, which heuristically states that
the set of large Fourier coefficients of a small set is highly structured, in the sense that its largest
“unstructured” subset is quite small (this can be extracted from its proof).

We call a subset A = {a1, . . . , an} of an abelian group dissociated if ϵi ∈ {−2,−1, 0, 1, 2} and∑
ϵiai = 0 implies ϵi = 0 for all i. In other words, there is no nontrivial additive relation (i.e.,

solutions to a1 + . . . + aj = a′
1, . . . + a′

k) between elements of A. Thus, a dissociated set has
basically no additive structure. Chang’s lemma [2] states the following:

Theorem 3.1. (Chang) Let A ⊆ G, |A| = δN , Γ = {r ∈ G : |Â(r)| ≥ ρδ}. Then there is a
Λ ⊆ Γ with |Λ| ≤ 6000ρ−2 log(1/δ) such that each element of Γ can be written as a linear
combination of elements of Λ with coefficients ±1 or 0.

I think it is instructive to think about what the bounds mean. By Parseval (dividing the sum
into large and small Fourier coefficients), Γ ≤ ρ−2δ−1. As δ goes to zero, log(1/δ) is much smaller
than δ−1. From the proof, it will turn out that Λ is obtained from (modulo a small technicality)
the largest dissociated subset of Γ. Therefore the largest “unstructured” subset of Γ is much
smaller than |Γ|, so the heuristic interpretation Γ is highly structured makes sense.

In view of the fact that Bohr sets are rigid under linear combinations with small coefficients, it
can be seen that how this result will be useful: In a Bohr neighborhood of the large spectrum of a
set, we can find another Bohr set with much smaller dimension, which gives a longer arithmetic
progression than we would get if we only used Lemma 1.3.

In order to prove Chang’s lemma, we will first prove a special case of Young’s convolution
inequality and Khintchine’s inequality, then we will use these to prove Rudin’s inequality, which
we will use in proving Chang’s lemma.

Lemma 3.2. (Young) If f, g : G → C and p ≥ 1, then ∥f ∗ g∥p ≤ ∥f∥1∥g∥p.

Proof. This proof is probably standard, and unfortunately I do not remember where I took
it from. Let p′ = p/(p− 1) so that 1/p + 1/p′ = 1. For all x, by Hölder we have

|f ∗ g(x)| ≤ Ey|f(x− y)g(y)| = Ey|f(x− y)|1/p
′
|f(x− y)|1/p|g(y)|

≤
(
Ey|f(x− y)|

)1/p′(
Ey′ |f(x− y′)||g(y′)|p

)1/p

,

and noting that the first term on the RHS is ∥f∥1/p
′

1 , we have
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∥f ∗ g∥p =

(
Ex|f ∗ g(x)|p

)1/p

≤ ∥f∥1/p
′

1

(
ExEy|f(x− y)||g(y)|p

)1/p

= ∥f∥1/p
′

1

(
EyEx|f(x− y)||g(y)|p

)1/p

= ∥f∥1/p
′

1

(
Ey|g(y)|pEx|f(x− y)|

)1/p

= ∥f∥1/p
′

1 ∥g∥p∥f∥1/p1 = ∥f∥1∥g∥p, (3.1)

We now prove (one side of) Khintchine’s inequality, which heuristically states that the Lp

norm of a sum of random variables with random signs is comparable to its L2 norm. We follow
the proof in [11].

Lemma 3.3. (Khintchine) Let p > 1. Then there is a constant Cp such that the following
holds: Let ϵi be independent random variables taking values ±1 with equal probability (known as

Rademacher random variables) and a1, . . . , an ∈ C. Then E|
∑

ϵiai|p ≤ Cp

(∑
|ai|2

)p/2

.

Note that Cp depends only on p, in particular, it does not depend on the sequence an or
even the length n of the sequence. Observe that by expanding out the square and using linearity
of expectation, we can write the sum on the RHS as ∥

∑
ϵiai∥22. So another formulation of

the inequality would be ∥
∑

ϵiai∥p ≤ Cp∥
∑

ϵiai∥2 (with a different Cp). Here, we can take
Cp = 8

√
p.

It can also be proved that ∥
∑

ϵiai∥p ≥ cp∥
∑

ϵiai∥2 (justifying the word ‘comparable’ in the
heuristic interpretation above), but we will not need this.

Proof. By Taylor expansion and noting that n!2n ≤ (2n)!, we have ex + e−x ≤ 2ex
2/2. Thus,

for real ai, for any t we have

Eet
∑

ϵiai =
∏

Eetϵiai ≤ et
2/2

∑
a2
i .

By Markov, for any λ > 0, P(
∑

ϵiai ≥ λ) = P(exp(t
∑

ϵiai) ≥ etλ) ≤ E exp(t
∑

ϵiai − tλ). Tak-
ing t = λ∑

a2
i

and using the inequality above, we obtain

P(
∑

ϵiai ≥ λ) ≤ exp

(
− λ2

2
∑

a2
i

)
.

Therefore, by symmetry, P(|
∑

ϵiai| ≥ λ) ≤ 2 exp

(
− λ2

2
∑

a2
i

)
for real ai.

Assume now that aj are complex, with aj = uj + ivj for real uj , vj (this is the only
time we use i for the imaginary unit). Then |

∑
ϵiai|2 = |

∑
ϵiui|2 + |

∑
ϵivi|2. Observe that∑

|ai|2 =
∑

u2
i +

∑
v2i , so |

∑
ϵiai| ≥ λ implies either |

∑
ϵiui| ≥ λ

( ∑
u2
i∑

|ai|2

)1/2

or |
∑

ϵivi| ≥

λ

( ∑
v2
i∑

|ai|2

)1/2

. Thus, invoking the result for the real case we have

P(|
∑

ϵiai| ≥ λ) ≤ P
(
|
∑

ϵiui| ≥ λ

( ∑
u2
i∑

|ai|2

)1/2)
+ P

(
|
∑

ϵivi| ≥ λ

( ∑
v2i∑
|ai|2

)1/2)
≤ 4 exp

(
− λ2

2
∑

|ai|2

)
.

We can express the Lp norm of a function on an arbitrary σ-finite probability space (X,A, µ)
as an integral over the real line as follows (this proof is in [4]):

E|f |p =

∫
X

|f(x)|pdµ(x) =

∫
X

∫ |f(x)|

0

pαp−1dαdµ

= p

∫∞

0

αp−1

∫
X

1{|f |≥α}dµdα = p

∫∞

0

αp−1P(|f | ≥ α)dα.
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Taking f =
∑

ϵiai and making the substitution α = (2
∑

|ai|2x)1/2, dα = (2
∑

|an|2)1/2
2
√
x

dx, we
obtain

E(|
∑

ϵiai|p) = p

∫∞

0

(2
∑

|ai|2x)(p−1)/2P
(
|
∑

ϵiai| ≥ (2
∑

|ai|2x)1/2
)

(2
∑

|an|2)1/2

2
√
x

dx

= p(2
∑

|ai|2)p/2
∫∞

0

x(p−2)/2P
(
|
∑

ϵiai| ≥ (2
∑

|ai|2x)1/2
)
dx

≤ 2p(2
∑

|ai|2)p/2
∫∞

0

x(p−2)/2e−xdx = 2p(2
∑

|ai|2)p/2Γ(p/2).

= 2(p+2)/2pΓ(p/2)(
∑

|ai|2)p/2,

which completes the proof. To obtain the precise estimate for Cp, we take 1/p’th powers
and observe by looking at the graphs of the relevant functions that 2(p+2)/2p ≤ 4, p1/p ≤ 2,
Γ(p/2) ≤ √

p. Therefore ∥
∑

ϵiai∥p ≤ 8
√
p∥

∑
ϵiai∥2, as claimed.

We now prove Rudin’s inequality (often [8] is cited for this, but I have failed to find the
exact statement in there, although there seem to be some related ideas), following the proof in
[10]. Heuristically, the inequality states that if a function has Fourier transform with dissociated
support, then all its Lp norms are controlled by its L2 norm. Recalling that Khintchine states
the same for Rademacher random variables, this can be interpreted as saying that characters
from a dissociated set behave similarly to Rademacher random variables.

Lemma 3.4. (Rudin) Let p > 1, S ⊆ G be a dissociated set, f : G → C with supp(f̂) ⊆ S.
Then ∥f∥p ≤ 16

√
p∥f∥2.

By Fourier inversion, this is equivalent to(
Ex∈G|

∑
r∈S

f̂(r)ωrx|p
)1/p

≤ 16
√
p

(
Ex∈G|

∑
r∈S

f̂(r)ωrx|2
)1/2

.

The method of proof is unlike any analysis proof I have ever seen. It is proved that when we
randomize the sign of the Fourier coefficients, on average the inequality holds. Then it is proved
that the Lp norm of these randomized functions are not much larger than of f , proving the
theorem. I do not know how one would come up with this proof.

Proof. For r ∈ S, let ϵr be independent Rademacher random variables. Define fϵ(x) =∑
r∈S ϵr f̂(r)ωrx (note that the value of fϵ at each x is a random variable). For all x ∈ G,

by Khintchine (with ai = f̂(i)ωix), noting that |ϵr| = |ωrx| = 1, and Parseval we have

E|fϵ(x)|p = E|
∑
r∈S

ϵr f̂(r)ωrx|p ≤ (8
√
p)p

(∑
r∈S

|f̂(r)|2
)p/2

= (8
√
p)p∥f∥p2,

where the expectation is taken over the choices for ϵr. Note that RHS does not depend on x.
Averaging over x and using linearity of expectation, we obtain E∥fϵ∥pp ≤ (8

√
p)p∥f∥p2. Therefore,

there is some assignment of ±1 to ϵr such that ∥fϵ∥p ≤ 8
√
p∥f∥2. From now on we fix ϵ as this

assignment. We will do a long computation to obtain ∥f∥p ≤ 2∥fϵ∥p.
Let

pϵ(x) =
∏
r∈S

(1 +
ϵr
2
ωrx +

ϵr
2
ω−rx) =

∑
X,X′⊆S

X,X′disjoint

∏
r∈X

ϵr
2
ωrx

∏
r′∈X′

ϵ′r
2
ω−r′x

=
∑

X,X′⊆S
X,X′disjoint

( ∏
r∈X∪X′

ϵr
2

)
ω(

∑
r∈X r−

∑
r′∈X′ r′)x.
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Observe that pϵ is nonnegative, so ∥pϵ∥1 = Epϵ(x) (note that our setting is deterministic now,
so expectation symbols denote averaging). Thus,

∥pϵ∥1 =
∑

X,X′⊆S
X,X′disjoint

( ∏
r∈X∪X′

ϵr
2

)
Ex∈Gω

(
∑

r∈X r−
∑

r′∈X′ r′)x.

The inner expectation is one or zero depending on whether
∑

r∈X r =
∑

r′∈X′ r
′ or not. However,

by dissociativity, the only way this can happen is X = X ′ = ∅, so ∥pϵ∥ = 1.
We claim that f = 2fϵ ∗ pϵ. By Fourier inversion and convolution identity it suffices to prove

that f̂ = 2f̂ϵp̂ϵ. By hypothesis f̂(r0) = 0 unless r0 ∈ S. Also f̂ϵ(r0) = 2ϵr0 f̂(r0) if r0 ∈ S and zero
otherwise. Now consider p̂ϵ(r0) for r0 ∈ S. By definition, this is equal to∑

X,X′⊆S
X,X′disjoint

( ∏
r∈X∪X′

ϵr
2

)
Ex∈Gω

(
∑

r∈X r−
∑

r′∈X′ r′−r0)x.

By orthogonality and dissociativity, the only contribution to this sum are when X = {r0} and
X ′ = ∅, so the sum is ϵr0/2. Note that this is why we also exclude coefficients ±2 in our definition
of dissociativity, as the sum multiplying x may include a coefficient −2 for r0. If we used the
other definition (only excluding ±1) of dissociativity, there could be other contributions to this
sum. Consider for example S = {1, 2}. Then 1 = 2 − 1, so we get unwanted contributions.

Now, combining everything we have, 2f̂ϵ(r0)p̂ϵ(r0) = 2ϵr0 f̂(r0)ϵr0/2 = f̂(r0), as claimed.
Therefore, using Young’s inequality and commutativity of convolution, ∥f∥p ≤ 2∥fϵ ∗ pϵ∥p ≤
2∥fϵ∥p∥pϵ∥1 = 2∥fϵ∥p ≤ 2 · 8

√
p∥f∥2 = 16

√
p∥f∥2, which completes the proof.

Proof of Chang’s lemma. Let E ⊆ Γ be a dissociated subset. Define ar = Â(r)√∑
r∈E |Â(r)|2

and

g(x) =
∑

r∈E arω
rx. Then, for any p > 1, by Rudin and Parseval, we have ∥g∥p ≤ 16

√
p∥g∥2 =

16
√
p∥ĝ∥ℓ2 = 16

√
p. Write q = p/(p− 1) so that 1/p + 1/q = 1. Then ∥A∥q = δ1/q. Then, since

E ⊆ Γ, by Plancherel and Hölder we have

ρδ
√

|E| ≤
√∑

r∈E

|Â(r)|2 =

∑
r∈E |Â(r)|2√∑
m∈E |Â(m)|2

= |
∑
r∈E

Â(r)ar| = |⟨Â, ĝ⟩ℓ2 | = |⟨A, g⟩L2 |

≤ ∥A∥q∥g∥p ≤ 16
√
pδ1/q.

Taking p = log(1/δ), we obtain |E| ≤ 256ρ−2δ−2δ−2/ log(1/δ) = 256e2ρ−2 log(1/δ). Note that
256e2 ≤ 2000.

Let E0 be a maximal dissociated subset of Γ. Then for any s ∈ Γ \ E0, E0 ∪ {s} is not
dissociated. Therefore, if s ∈ Γ \ E0, there is a nontrivial relation of the form ϵss +

∑
ϵiei =

ϵ′ss +
∑

ϵ′iei, where ei are the elements of E0 and ϵi are zero or ±1. Since E0 is dissociated,
ϵs ̸= ϵ′s. Thus s is a linear combination of the elements of E0 with coefficients 0, ±1/2,±1 or ±2.
Taking Λ = E0/2 ∪ E0 ∪ 2E0, we finish the proof.

There is another proof of Chang’s lemma due to Ruzsa, not relying on Rudin’s inequality
(in fact Rudin’s inequality can be deduced from it), given in [6], which seems to be not very
well-known. I have not attempted to understand it, but it seems to use less heavy machinery.

4. Proof of Theorem 1.4

4.1. Brief outline of proof (again)

Let us recall what we are going to do (in a bit more detail than the brief outline in the first
section). Let A be our α-HNU set. We fix some density β depending on α (we will have β =
exp(−cα

√
logN) for some suitable constant c), consider the subset B ⊆ A of size βN minimizing

the largest nontrivial Fourier coefficient (a very small technicality: β need not be a multiple of
1/N , but when N is large enough (even, say, N > 100), which is the regime we are interested in,
⌊βN⌋ is within 0.99 and 1.01 times βN , and the argument will still work. Thus, for convenience
we will assume β is a multiple of 1/N . It might be the case that slight alteration of the constants
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appearing is needed to make this fully rigorous, but surely it will work.), and let ηβ be this
minimum (since A is α-HNU, η ≥ α). We use Chang’s lemma to find a long AP P in a Bohr
neighborhood of the large spectrum of B. Most translates of P do not have too large intersection
with B. We let C be the set of such translations.

Since C is very large, it will not have large nontrivial Fourier coefficients. Then, taking elements
at random, we can find a small subset D of C which also does not have large nontrivial Fourier
coefficients. By the same probabilistic argument there will be a subset X of B with the same
size as D and with Fourier coefficients about the same size as B. It turns out that however
we translate the elements of D by elements of P to obtain a set D′, the multiset (i.e., we allow
multiple elements, so this corresponds to adding and subtracting indicator functions) D′ ∪B \X
has smaller largest Fourier coefficient than ηβ, so if it were a genuine set, we would obtain a
contradiction.

It follows that Ac \B contains a very large proportion of a translate of P , which, after some
calculations and optimization of parameters, gives an AP of desired length in Ac. Now we make
this discussion rigorous.

4.2. Using Chang’s lemma

Lemma 4.1. Let R = {r ∈ G : |B̂(r)| ≥ ηβ/2}. Then B(R, η/64) contains an AP P of length

≥ η3Nη2/24000 log(1/β)/221 log(1/β).

Proof. By Chang, each element of R is in the ±1-span of some Λ of size m ≤
6000( η

2
)−2 log(1/β) = 24000η−2 log(1/β). By triangle inequality, B(Λ, η/64m) ⊆ B(R, η/64).

By Lemma 1.3, B(Λ, η/64m) contains an AP P of size at least ηN1/m/64m ≥
η3Nη2/24000 log(1/β)/221 log(1/β) (since 24000 < 215).

4.3. Finding the set C

Lemma 4.2. For at least (1 − η/16)N values of x ∈ G, we have |(x + P ) ∩B| ≤ 16β|P |/η.

Proof. If not, then we would have |P ||B| =
∑

x∈G |(x + P ) ∩B| > η
16
N · 16β

η
|P | ≥ |P ||B|,

which is absurd.

Let C be the set of (1 − η/16)N values of x in this lemma. Then, since 1̂(r) = 0 for all r ̸= 0 and
|C|/N ≥ 1/2, we have |Ĉ(r)| ≤ |Cc|/N ≤ η/16 ≤ η|C|/8N for r ̸= 0. Since the largest possible
size of a Fourier coefficient of C is |C|/N , this means all nontrivial Fourier coefficients of C are
at most η/8 times as large as possible, so they are quite small. Remember that we are aiming
to eventually construct a (multi-)set whose all nontrivial Fourier coefficients are less than η.

4.4. Using Bernstein’s inequality and finding the sets D and X

Lemma 4.3. Let 3|C|/4 ≥ t > 15000η−2 logN . Then there is a subset D ⊆ C of size t such
that |D̂(r)| ≤ ηt/4N for all r ̸= 0.

Proof. Construct a set E ⊆ C randomly as follows: For each x ∈ C, include x in E
independently with probability t/|C|. Consider the rescaled Fourier coefficients NÊ(r). Each
of these is the sum of |C| independent random variables E(x)ω−rx with mean tC(x)/|C|,
variance t

|C| · (1 − t
|C| ) ≤ t/|C|. By Bernstein (with t = ηt/(24|C|)), provided that (after some

straightforward computation) t ≤ |C|(1 − η/4), we have

P
(∣∣∣∣Ê(r) − tĈ(r)

|C|

∣∣∣∣ ≥ ηt/24N

)
≤ 4 exp(−n2t/4608) ≤ 4 exp(−n2t/5000). (4.1)

Observe that, if r ̸= 0, since |Ĉ(r)| ≤ η|C|/8N ,

|Ê(r)| ≥ ηt/6N implies

∣∣∣∣Ê(r) − tĈ(r)

|C|

∣∣∣∣ ≥ ηt/24N.
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Writing r = 0 in (4.1), we obtain P(||E| − t| ≥ ηt/24) ≤ 4 exp(−n2t/5000). We claim that if t ≥
15000η−2 logN , then P(||E| − t| ≥ ηt/24) and |Ê(r)| ≥ ηt/6N for all r ̸= 0 with positive proba-
bility. By the union bound, the probability of all these happening is ≥ 1 −N · 4N1−15000/5000 =
1 − 4/N > 0 (for N > 4). Therefore there exists a set E0 with size t(1 − η/24) ≤ |E0| ≤ t(1 +
η/24) and |Ê0(r)| ≤ ηt/6N for all r ̸= 0.

Now, to obtain D, we can add or delete elements from E0 arbitrarily to get the correct size,
since |E∆D| = k implies |Ê(r) − D̂(r)| ≤ k/N . Since 6 + 1/24 ≤ 1/4, we are done.

The following lemma has the exact same proof as the previous, so we omit its proof.

Lemma 4.4. Let βN ≥ t ≥ 15000η−2 logN . Then there exists a subset X ⊆ B of size t such

that

∣∣∣∣X̂(r) − t
|B| B̂(r)

∣∣∣∣ ≤ ηt/12N .

4.5. Finding a contradictory multiset S′

Lemma 4.5. Let S be the multiset D ∪B \X. Then, for all r ∈ R, we have |Ŝ(r)| ≤ η|B|/N −
ηt/6N , and for all r /∈ R ∪ {0}, we have |Ŝ(r)| ≤ η|B|/2N + ηt/3N .

Note that |S| = |B|.

Proof. By linearity, Ŝ(r) = B̂(r) − X̂(r) + D̂(r). Using the two lemmas in the previous
section, we obtain Ŝ(r) = (1 − t/|B|)B̂(r) + Q(r), where |Q(r)| ≤ ηt/3N . If r ∈ R, then, by
definition of R we have |B̂(r)|/|B| ≥ η/2N , so |Ŝ(r)| ≤ η|B|/N − ηt/6N .

If r /∈ R ∪ {0}, then |Ŝ(r)| ≤ η|B|/2 + ηt/3, again by definition of R.

Let D = {d1, . . . , dt} and D′ be any set obtained by replacing each di with di + xi for some
xi ∈ P . Let S′ = D′ ∪B \X (as a multiset). If t is small enough, we will see that S′ will be a
contradictory multiset. Note again that |S′| = |B|.

Lemma 4.6. Assume t ≤ ηβN/10 = η|B|/10. Then for any r ̸= 0, we have |Ŝ′(r)| < η|B|/N .

Proof. Since |S∆S′| = |D∆D′| ≤ 2t, if r /∈ R ∪ {0} we have |Ŝ′(r)| ≤ |Ŝ(r)| + 2t/N ≤
η|B|/2N + ηt/3N + 2t/N ≤ η|B|/2N + 3t/N , which is ≤ η|B|/N provided that t ≤ ηβN/6.

If r ∈ R, then, since P ⊆ B(R, η/64), we have |Ŝ′(r) − Ŝ(r)| ≤ 1
N

∑t
j=1 |ω

r(dj+xj) − ωrdj | ≤
t
N

· 2πη/64 ≤ ηt/8N . Combining with the previous lemma, we obtain |Ŝ(r)| ≤ η|B|/N .

Now, if S′ were a genuine set (i.e., all its elements are distinct), then this would contradict
the minimality of η. It follows that there is no choice of xi’s making S′ a set.

4.6. Finding a large proportion of a long AP in Ac

Lemma 4.7. There is some j such that dj + P ⊆ B ∪Ac, except for at most t elements.

Proof. Assume for contradiction that the statement is false. Then for all j, |(dj + P ) ∩ (A \
B)| ≥ t. Pick x1 ∈ (d1 + P ) ∩ (A \B), x2 ∈ (d2 + P ) ∩ (A \B) not equal to x1, and so on, with
each xi in (di + P ) ∩ (A \B) and not equal to x1, . . . , xi−1. This is possible because of our
assumption.

However, di + xi are all distinct, picking D′ as the set of these numbers and noting that
D′ ∩B = ∅, we see that this gives a S′ which is a genuine set, which is absurd.

Pick some j satisfying the conclusion of the above lemma. Since dj ∈ D ⊆ C, we have |(dj +
P ) ∩B| ≤ 16β|P |/η.
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Thus, |(dj + P ) ∩Ac| ≥ (1 − 16β/η)|P | − t. If we choose t so that t ≤ 16β|P |/η, then Ac

contains at least |(1 − 32β/η)|P | elements of dj + P . We see that this implies Ac contains an AP
of length at least η/64β provided that |P | ≥ 32β/η, by using the following combinatorial lemma:

Lemma 4.8. If P is an arithmetic progression, ϵ ≥ 1/|P | and S contains at least (1 − ϵ)|P |
elements of P . Then S contains an arithmetic progression of length at least 1/2ϵ.

Proof. Partition S ∩ P into consecutive runs P1, . . . , Pk. By hypothesis, k ≤ ϵ|P |. We have∑k
i=1 |Pi| ≥ (1 − ϵ)|P |. If the lemma were false, then we would have (1 − ϵ)|P | < ϵ|P |/2ϵ = |P |/2,

so ϵ > 1/2, but in that case the lemma is true trivially, since 1/2ϵ ≤ 1.

4.7. Finishing the proof and choosing parameters

In this section we carry out a sketch (just the last steps of each computation) of very unpleasant
computations to finish the proof. It is likely that there are slight numerical inaccurracies in this
section, but they should not be very serious. Recall the following: We require t ≤ 16β|P |/η,
t ≥ 15000η−2 logN , t ≤ ηβN/10, |P | ≥ η/32β.

Pick t = 15000η−2 logN , β = exp(−cα
√

logN), with c = 1/15000 · 217. Recall that η ≥ α ≥
c′ log logN/

√
logN .

If β ≥ α, then η is undefined, but in this case Ac contains a progression of length at least
1/2β ≥ η/64β by the above lemma.

To prove the first requirement, taking logs and rearranging we find that (c′(15000 · 217/24000 −
c) − 3/2) log logN ≥ 0, which is true for c′ > 1.

The second requirement is trivial. Again by taking logs, the third can be seen to be implied
by (5/2 + cc′) log logN ≤ 3 log c′ + 3 log log logN + logN , which is always true when c′ > 1. The
fourth requirement is immediate from the first one, since t > 1/2.

It remains to show that log(η/64β) ≥ c′′α
√

logN for some c′′. Expanding everything, we see
that this is implied by log log logN + log(c′/64) ≥ (c′(c′′ − c) + 1/2) log logN , so taking c′′ = c/2
and c′ = 1/c, we complete the proof.
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