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Abstract

Roth’s theorem on arithmetic progressions states that if r(N) denotes the cardinality of the
largest subset of {1, 2, . . . , N} which contains no nontrivial 3-term arithmetic progressions, then

lim
N→∞

r(N)

N
= 0. We give a proof of this theorem, following the sketch in O’Bryant’s Mathoverflow

answer [OBr10] and chapter 10.2 of Vaughan’s book [Vau97].

1 Introduction

1.1 The problem

Let N be the set of positive integers (in particular, 0 /∈ N). We call a subset A of N “good”1 if the only
solutions to a+ b = 2c in A are the trivial solutions, i.e., a = b = c. By making the change of variables
d = c− a, we see that A is good if and only if it contains no triple of the form (a, a+ d, a+ 2d) with
d ̸= 0.

Let r(N) denote the largest size (cardinality) of a good subset of {1, 2, . . . , N}, and define ρ(N) =
r(N)
N . In [Rot53], Roth proved that ρ(N) → 0 as N → ∞2. This can be phrased in words as ”if a set

is large, then it contains a 3-term arithmetic progression”. In this article we give a proof of this result,
based on the sketch given in O’Bryant’s Mathoverflow answer [OBr10] and chapter 10.2 of Vaughan’s
book [Vau97]. The proof utilizes Fourier analysis, in the form of manipulating finite exponential sums.

Remark. In [Rot53], ρ(N) = O( 1
log logN ) is proved. This bound has been improved many times, with

the most recent improvement by Kelley and Meka [KM23], showing that ρ(N) ≤ 2−Ω((logN)c) for some
absolute constant c, where Ω(f) denotes a quantity that is larger in absolute value than kf for some
constant k.

1.2 Notation

O∗(f)3 denotes a quantity smaller in absolute than f . For instance, f(x) = g(x) + O∗(h(x)) means
|f(x) − g(x)| ≤ h(x). We write e(x) for exp(2πix). We write [x] for the floor of x, i.e., the largest
integer not greater than x, and {x} for the fractional part of x, i.e., {x} = x− [x]. We write δ(x) for

the function which is 1 at 0 and 0 at all other points, so that
∫ 1

0
e(ax)dx = δ(a). We write 1S(x) for

the indicator function of the set S, i.e., 1S(x) = 1 if x ∈ S and 1S(x) = 0 if x /∈ S.

2 Preliminaries

In this section we make several definitions and prove several lemmata which will be useful in the proof.

Lemma 1. If N,M ∈ N, then r(N +M) ≤ r(N) + r(M).

Proof. Let A ⊆ {1, 2, . . . , N + M} such that A is good and |A| = r(N + M). Consider A1 = A ∩
{1, 2, . . . , N}, A2 = A ∩ {N + 1, N + 2, . . . , N +M}, so that |A| = |A1| + |A2|. Since A is good and
A1, A2 ⊆ A, we see that A1 and A2 are good. By definition, |A1| ≤ r(N). Let A′

2 = a−N : a ∈ A2,

1This is not standard terminology.
2Actually he proved a stronger statement, namely, ρ(N) ≤ C

log logN
for some C, i.e., ρ(N) = O( 1

log logN
).

3This is not standard notation.
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so that |A′
2| = |A2|, A′

2 ⊆ {1, 2, . . . ,M}, and A′
2 is good (since arithmetic progressions are preserved

under translations)4. Thus |A2| ≤ r(M), so r(N + M) = |A| = |A1| + |A2| ≤ r(N) + r(M), as
desired.

The following classical lemma is due to Pólya and Szegő [PS12] (part 1, problem 98), with a special
case due to Fekete [Fek23].

Lemma 2. If (an)n≥1 is a sequence of real numbers that satisfies

an+m ≤ an + am (1)

for all n,m ≥ 1, and inf
n≥1

an
n

̸= −∞, then an

n → inf
n≥1

an
n

as n → ∞.

Proof. Define α = inf
n≥1

an
n
, and let ϵ > 0 be given. By definition of inf, there is some m ≥ 1 such that

am

m < α+ ϵ. Let n ≥ 1. Then by elementary number theory, there exist q, r ∈ Z, q, r ≥ 0, r < m such
that n = mq + r. Then, by repeated application of 1, we obtain an = aqm+r ≤ aqm + ar ≤ qam + ar,
so

an
n

=
aqmr

qm+ r
≤ qam + ar

qm+ r
=

qam
qm+ r

+
ar

qm+ r
≤ qam

qm
+

ar
n

=
am
m

+
ar
n
.

Thus
α ≤ an

n
≤ am

m
+

ar
n

< α+ ϵ+
ar
n
.

Taking lim sup, since |ar| ≤ max
0≤k<m

|ak| and the RHS does not depend on n, we obtain α ≤ lim sup
n→∞

an
n

<

α+ ϵ, so

lim sup
n→∞

an
n

= α. (2)

By the properties of lim inf and lim sup, we have lim sup
n→∞

an
n

≥ lim inf
n→∞

an
n

≥ α. Combining this with 2,

we obtain lim
n→∞

an
n

= α, as claimed.

Observe that since r(N)
N ≥ 0 for all N , by combining Lemmas 1 and 2, we have ρ(N) → inf

n≥1
ρ(N).

Define ρ = inf
n≥1

ρ(N). For N ≥ 1, let AN be the lexicographically smallest good subset of {1, 2, . . . , N}

of size |AN | = r(N). We define SN (x) =
∑

a∈AN

e(ax) =

N∑
k=1

1AN
(k)e(kx), TN (x) =

N∑
k=1

e(kx), IN =∫ 1

0
SN (x)2SN (−2x)dx and I0N =

∫ 1

0
SN (x)2TN (−2x)dx. We record several facts in the following lemma:

Lemma 3. We have the following:

r(N) =

∫ 1

0

|SN (x)|2dx (3)

r(N) = IN (4)

I0N ≥ r(N)2

4
(5)

Proof. The proof is direct calculation.∫ 1

0

|SN (x)|2dx =

∫ 1

0

SN (x)SN (x)dx =

∫ 1

0

∑
a∈AN

e(ax)
∑
b∈AN

e(bx)dx (6)

=
∑

a,b∈AN

∫ 1

0

e((a− b)x)dx =
∑

a,b∈AN

δ(a− b) = |AN | = r(N), (7)

4We record the following remark: Arithmetic progressions are preserved under translations and scalings, so r(N) is
equal to the size of the largest good subset of any arithmetic progression of length N . We will use this fact freely.
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so 3 is proved.

IN =

∫ 1

0

SN (x)2SN (−2x)dx =

∫ 1

0

∑
a∈AN

e(ax)
∑
b∈AN

e(bx)
∑
c∈AN

e(−2cx) (8)

=
∑

a,b,c∈AN

∫ 1

0

e((a+ b− 2c)x)dx (9)

=
∑

a,b,c∈AN

δ(a+ b− 2c) = |AN | = r(N), (10)

where in the penultimate step we used the fact that AN is good, which establishes 4.

I0N =

∫ 1

0

SN (x)2TN (−2x)dx =

∫ 1

0

∑
a∈An

e(ax)
∑
b∈AN

e(bx)

N∑
c=1

e(−2cx)dx (11)

=
∑

a,b∈AN

N∑
c=1

∫ 1

0

e((a+ b− 2c)x)dx (12)

=
∑

a,b∈AN

N∑
c=1

δ(a+ b− 2c) (13)

= |{(a, b, c) : a+ b = 2c, a, b ∈ AN , c ∈ {1, 2, . . . , N}}| (14)

= |{(a, b) : a, b ∈ AN , a ≡ b (mod 2)}| (15)

Let A
(0)
N be the set of even elements of AN and A

(1)
N be the set of odd elements of AN , and r0 = |A(0)

N |,
r1 = A

(1)
N , so that r(N) = r0 + r1. Then, by 15,

I0N = r20 + r21 ≥ 1

2
(r20 + r21) =

1

2

(r0 + r1)
2 + (r0 − r1)

2

2
≥ 1

4
(r0 + r1)

2 =
r(N)2

4
, (16)

which completes the proof.

We will use the following inequality.

Lemma 4. For 0 < x < π
2 we have

2x

π
≤ sin(x) ≤ x. (17)

Proof. Let f(x) = sin(x) − x. Then f(0) = 0 and f ′(x) = cos(x) − 1 ≤ 0, so f(x) ≤ 0 for x > 0.

This gives the inequality on the right. For the inequality on the left, let g(x) = sin(x)
x . Then g′(x) =

x cos(x)−sin(x)
x2 . Let h(x) = x cos(x)− sin(x). Then h(0) = 0 and h′(x) = −x sin(x) ≤ 0 for 0 < x < π

2 ,
so h(x) ≤ 0 for 0 < x < π

2 . Thus g′(x) ≤ 0 for 0 < x < π
2 , so g is non-increasing on (0, π

2 ). Thus
g(x) ≥ g(π2 ) =

2
π , so sin(x) ≥ 2x

π , as desired.

The following lemma of Dirichlet will also be useful.

Lemma 5 (Dirichlet). Let α ∈ R. Then for all A ∈ N, there exists a rational number a
q such that

1 ≤ q ≤ A and |α− a
q | ≤

1
qA .

Proof. Consider the A numbers
{α}, {2α}, . . . , {Aα},

and the A+ 1 intervals

[0,
1

A+ 1
), [

1

A+ 1
,

2

A+ 1
), . . . , [

A

A+ 1
, 1).

If some {qα} is in the first or last interval, then we are done, since there exists some a ∈ Z such that
|qα−a| ≤ 1

A+1 ≤ 1
A , which gives the desired rational number after dividing both sides by q. Otherwise,

we have A numbers in A − 1 intervals, so by pigeonhole principle there exists an interval [ b
A+1 ,

b+1
A+1 )
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which contains at least two of the numbers, say, {h1α} and {h2α}, with h1 < h2. Take q = h2 − h1

and a = [h2α]− [h1α]. Then

|qα− a| = |h2α− h1α− ([h2α]− [h1α])| = |{h2α} − {h1α}| ≤
1

A+ 1
≤ 1

A
. (18)

Dividing by q, we obtain the desired result.

3 The proof of the theorem

In this section we will prove that ρ = 0. In order to prove this, we introduce some functions, for which
we will prove some bounds. These bounds will translate to an expression for ρ, which will prove the
theorem.

We define

FM (x) =

M−1∑
z=0

e(zx), (19)

EN,M (x) = ρ(M)TN (x)− SN (x), (20)

σM,q(y) =

M−1∑
k=0

(ρ(M)− 1AN
(y + kq)). (21)

Note that FM is 1-periodic and we have

|FM (x)| =

∣∣∣∣∣
M−1∑
z=0

e(x)z

∣∣∣∣∣ =
∣∣∣∣∣1− e(Mx)

1− e(x)

∣∣∣∣∣ =
∣∣∣∣∣1− e2πiMx

1− e2πix

∣∣∣∣∣ =
∣∣∣∣∣eπiMx(e−πiMx − eπiMx)

eπix(e−πix − eπix)

∣∣∣∣∣ (22)

=

∣∣∣∣∣e−πiMx − eπiMx

e−πix − eπix

∣∣∣∣∣ =
∣∣∣∣∣ e

−πiMx−eπiMx

2i
e−πix−eπix

2i

∣∣∣∣∣ (23)

=

∣∣∣∣∣ sin(πMx)

sin(πx)

∣∣∣∣∣ (24)

for x /∈ Z.
The following lemma is the key step of the proof.

Lemma 6. If q < N
M , then for all y ∈ N with 1 ≤ y ≤ N −Mq, we have the following:

σM,q(y) ≥ 0, (25)

FM (xq)EN,M (x) =

N−Mq∑
y=1

σM,q(y)e(x(y +Mq − q)) +O∗(2m2q) (26)

Proof. We first prove 26. By definition, we have

FM (xq)EN,M (x) =

M−1∑
z=0

e(zqx)

N∑
k=1

(ρ(M)− 1AN
(k))e(kx) (27)

=

M−1∑
z=0

N∑
k=1

(ρ(M)− 1AN
(k))e((k + zq)x). (28)

We make the change of variables h = k + (z − (M − 1)q), so that k + zq = h+Mq − q. Then

FM (xq)EN,M (x) =

N∑
h=1+q−Mq

e((h+Mq − q)x)

M−1∑
z=0

1≤h+(M−1−z)q≤N

(ρ(M)− 1AN
(h+ (M − 1− z)q)).

(29)
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Using the facts 1 ≤ h+(M−1−z)q ≤ N for all 1 ≤ h ≤ N−Mq and 0 ≤ z ≤ M−1, e((h+Mq−q)x) =
O∗(1), each term in the inner sum is O∗(1) and there are at most M terms, after splitting the sum we
obtain

FM (xq)EN,M (x) =

N−Mq∑
h=1

e((h+Mq − q)x)

M−1∑
z=0

(ρ(M)− 1AN
(h+ (M − 1− z)q)) (30)

+

0∑
h=1+q−Mq

O∗(M) +

N∑
h=N−Mq+1

O∗(M) (31)

=

N−Mq∑
h=1

σM,q(h)e(x(h+Mq − q)) + (Mq − q +Mq)O∗(M) (32)

=

N−Mq∑
y=1

σM,q(y)e(x(y +Mq − q)) +O∗(2M2q), (33)

as desired.
We now prove 25. Fix some y such that 1 ≤ y ≤ N −Mq. Then we have

σM,q(y) =

M−1∑
k=0

(ρ(M)− 1AN
(y + kq)) = r(M)−

M−1∑
k=0

1AN
(y + kq). (34)

Let R =

M−1∑
k=0

1AN
(y + kq). Then R = |AN ∩ {y, y + q, . . . , y + (M − 1)q}|. The set on the RHS is

a subset of AN , so it is good. It is also a subset of an arithmetic progression of length M , so by a
remark in a footnote of the previous section, R ≤ r(M). Thus σM,q(y) ≥ 0.

The bound for EN,M (x) obtained in the following lemma will let us deduce almost immediately
that ρ = 0.

Lemma 7. For N,M satisfying 2M2 < N , for all x ∈ R we have

|EN,M (x)| ≤ π

2
N(ρ(M)− ρ(N)) + 4πM2. (35)

Proof. By Lemma 5, there exists a rational number a
q such that 1 ≤ q ≤ 2M and

∣∣x− a
q

∣∣ ≤ 1
2qM . Note

that Mq ≤ 2M2 < N , so q < N/M . Let b = qx − a. If b = 0, then FM (xq) = FM (a) = FM (0) = M .
Therefore we have

|EN,M (x)| = M

M
|EN,M (x)| = 1

M
|FM (xq)EN,M (x)| (36)

≤ 1

M

(
N−Mq∑
y=1

σM,q(y) + 2M2q

)
(37)

≤ 1

M
((FM (0)EN,M (0)−O∗(2M2q)) + 2M2q) (38)

≤ EN,M (0) + 4Mq (39)

≤ N(ρ(M)− ρ(N)) + 8M2, (40)

where we used triangle inequality and 26 in 37, and 26 in reverse in 38.
If b ̸= 0, then 0 < |b| < 1

2M so 0 < |πMb| < π
2 . Since sin is an odd function, without loss of

generality we may assume that b > 0. Then, by 24 and Lemma 4,

|FM (xq)| = |FM (xq − a)| = |FM (b)| =

∣∣∣∣∣ sin(πMx)

sin(πx)

∣∣∣∣∣ (41)

≥ sin(πMb)

πb
(42)

≥ M
sin(πMb)

πMb
≥ 2M

π
. (43)
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Using 43, similarly to 40 we obtain

|EN,M (x)| = π

2M

2M

π
|EN,M (x)| ≤ π

2M
|FM (xq)EN,M (x)| (44)

≤ π

2M

(
N−Mq∑
y=1

σM,q(y) + 2M2q

)
(45)

≤ π

2M
((FM (0)EN,M (0)−O∗(2M2q)) + 2M2q) (46)

≤ π

2
(EN,M (0) + 4Mq) (47)

≤ π

2
N(ρ(M)− ρ(N)) + 4πM2. (48)

Since 1 < π
2 and 8 < 4π, 40 is not greater than 48. Thus 35 holds for all x.

We can now prove Roth’s theorem.

Theorem 1 (Roth). We have
lim

N→∞
ρ(N) = ρ = 0. (49)

Proof. For N,M ∈ N with 2M2 < N , define ∆N,M = |IN − ρ(M)I0N |. Then we have

∆N,M =

∣∣∣∣∣
∫ 1

0

SN (x)2SN (−2x)dx− ρ(M)

∫ 1

0

SN (x)2TN (−2x)dx

∣∣∣∣∣ (50)

≤
∫ 1

0

|SN (x)|2|SN (−2x)− ρ(M)TN (−2x)|dx (51)

≤ ∥EN,M∥∞
∫ 1

0

|SN (x)|2dx (52)

= ∥EN,M∥∞r(N) (53)

≤ r(N)

(
π

2
N(ρ(M)− ρ(N)) + 4πM2

)
, (54)

where we used 3 in 53 and 35 in 54. We also have

∆N,M = |r(N)− ρ(M)I0N | ≥ ρ(M)I0N − r(N) (55)

≥ ρ(M)r(N)2

4
− r(N) (56)

=
ρ(M)ρ(N)Nr(N)

4
− r(N) (57)

= r(N)

(
Nρ(M)ρ(N)

4
− 1

)
, (58)

where we used 5 in 56, and the fact r(N) = Nρ(N) in 57. Thus, combining 54 and 58, we obtain

Nρ(M)ρ(N)

4
− 1 ≤ π

2
N(ρ(M)− ρ(N)) + 4πM2, (59)

so

ρ(M)ρ(N) ≤ 4

N
+ 2π(ρ(M)− ρ(N)) +

16πM2

N
. (60)

Keeping M fixed and taking limits as N → ∞ (which is allowed since 2M2 < N is not violated as
N → ∞), we obtain

ρ · ρ(M) ≤ 2π(ρ(M)− ρ). (61)

Taking limits as M → ∞, we see that

ρ2 ≤ 2π(ρ− ρ) = 0, (62)

so ρ = 0. This completes the proof.
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