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Abstract

We give an inverse theorem for the Gowers U3 norm on Fn
5 and use

it to prove the existence of many (proportional to the density of the
set) 4 term arithmetic progressions with the same step size in subsets
of Fn

5 .

1.1 Introduction

Let 1 ≥ α > 0 be a real number. We aim to show the existence of 4 term
arithmetic progressions in subsets A ⊂ Fn

5 with density α for large enough n.
Throughout the summary, G will denote Fn

5 , and N = |G|.

Theorem 1. Let α, ϵ > 0 be real numbers. Then there is an n0 = n0(α, ϵ)
with the following property. Suppose that n > n0(α, ϵ), and that A ⊆ G is a
set with density α. Then there is some d ̸= 0 such that A contains at least
(α4 − ϵ)N four-term arithmetic progressions with common difference d.

Instead of working with the set A ⊂ G, we will consider its characteristic
function 1A : G → {0, 1}. The averages, the Fourier transform, and the
Gowers uniformity norm of functions carry information about the number
of arithmetic progressions in A. However, the techniques used to prove the
existence of 3-APs cannot be directly generalized to 4-APs. We summarize
these differences and introduce the required notions.

Definition 2 (Λ3,Λ4). For fi : G → [−1, 1] we define Λ3(f1, f2, f3) =
Ex,df1(x)f2(x+ d)f3(x+ 2d), and Λ4(f1, f2, f3, f4) analogously.

Definition 3 (Gowers norms). The Gowers uniformity norm of f : G → R
for integer d ≥ 2 is defined as follows

∥f∥2dUd :=
∑

x,h1,...,hd

∏
ω1,...,ωd∈{0,1}

f(x+ h1w1 + . . .+ hdωd).
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In k = 3 case

• The operator Λ3 is controlled by the Gowers U2-norm. Specifically for
any three functions f1, f2, f3 : G→ [−1, 1] we have

|Λ3 (f1, f2, f3)| ⩽ inf
i=1,2,3

∥fi∥U2 .

• (Gowers inverse theorem) If the Gowers U2-norm of a function f : G→
[−1, 1] is large, f must have a large Fourier coefficient:

∥f∥U2 ⩾ δ ⇒ ∥f̂∥∞ ⩾ δ2.

The first item is directly generalized, while the second item is not. The
following proposition and example illustrate this.

Proposition 4. Let f1, . . . , f4 : G → [−1, 1] be any four functions. Then
we have

|Λ4 (f1, . . . , f4)| ⩽ inf
i=1,...,4

∥fi∥U3 .

Example 5. There is a function f : G → C with ∥f∥∞ ⩽ 1 such that
∥f∥U3 = 1, but such that ∥f̂∥∞ ⩽ N−1/2. Namely f = wxT x.

Instead, we find that f has significant correlation with a quadratic phase:

Theorem 6. Suppose that f : G→ [−1, 1] is a function for which ∥f∥U3 ⩾ δ.
Then there is a matrix M ∈ Mn (F5) and a vector r ∈ Fn

5 so that∣∣∣Ex∈Gf(x)ω
xTMx+rT x

∣∣∣ ≫δ 1.

2 Proof of Theorem 6
There are 3 steps in proving a function f with large U3 norm correlates
with a quadratic phase wxTMx+rT x. Throughout, |G| ≫δ 1 whenever needed,
f : G→ [−1, 1], ∥f∥U3 ⩾ δ, M denotes an n×n matrix with entries from F5,
b denotes a vector in Fn

5 , and ∆(f ;h)(x) = f(x)f(x− h) is a "multiplicative
derivative".

The first step is to show that the derivative of f obeys a "weak linearity"
property: There is a function ϕ : G → Ĝ and S ⊆ G with |S| ≫δ |G| such
that
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1. |∆(f ;h)∧(ϕ(h))| ≫δ 1 for all h ∈ S

2. There are ≫δ |G|3 quadruples (s1, s2, s3, s4) ∈ S4 such that s1 + s2 =
s3 + s4 and ϕ (s1) + ϕ (s2) = ϕ (s3) + ϕ (s4).

The second step is to show that this weak linearity property implies a
stronger linearity property: If ϕ : G → Ĝ, S ⊆ G satisfy the conclusions 1
and 2 of the previous step, then there is some linear function ψ(x) =Mx+ b
such that ψ(x) = ϕ(x) for ≫δ |G| values of x ∈ S. We give a sketch of the
proof of this step.

Consider Γ = {(h, ϕ(h)) : h ∈ S}. By conclusion 2 of the first step, we
can use the Balog-Szemerédi-Gowers theorem to find some Γ′ ⊆ Γ such that
|Γ′| ≫δ |Γ| ≫δ |G| and |Γ′ + Γ′| ≪δ |Γ′|. Identifying G × Ĝ with F2n

5 , by
Freiman’s theorem, we can find a subspace H ⊆ F2n

5 containing Γ′ such that
|H| ≪δ |Γ′| ≪δ |G|.

Consider the canonical projection π : H → G to the first factor, and let
S ′ = π(Γ′), so that |π(H)| ≥ |S ′| ≫δ |G|. By the rank-nullity theorem, it fol-
lows that dimker(π) ≪δ 1. Let H ′ = (ker(π))⊥, so that H =

⋃
x∈ker(π)

(H ′+x),

where the union is disjoint and taken over ≪δ 1 elements. Observe that π
is injective on each of the cosets in the union. By the pigeonhole principle,
there is some x such that |(x+H ′)∩Γ′| ≫δ |Γ′| ≫δ |G|. Let Γ′′ = (x+H ′)∩Γ′

and S ′′ = π(Γ′′), V = π(x+H ′). Then ψ : V → Ĝ given by the composition
of π−1 and the canonical projection to the second factor is an affine map, so
ψ(x) =Mx+b for some M, b. It can be seen that ψ(x) = ϕ(x) for all x ∈ S ′′,
so the proof is complete.

Combining the two steps, we can find some M , b such that

Eh |∆(f ;h)∧(Mh+ b)|2 ≫δ 1.

It turns out that a Matrix M satisfying the above bound is approximately
symmetric in a precise sense: If

Eh |∆(f ;h)∧(Mh+ b)|2 ≫δ 1,

Then rank(M) ≪δ 1.
From this we can recover a fully symmetric matrix M ′, which gives the-

orem 6.
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3 Arithmetic Regularity for U 3

In this section, the main objective is to decompose a function f : G → [−1, 1]
into three parts. The first one, E(f | B), is constant on certain sets, the
second one is the error term in the sense of having a small L2 norm, and the
third has a small U3 norm.

Definition 7 (Factors, Conditional Expectation, Rank of a Quadratic Fac-
tor). Let ϕ1, . . . , ϕk : G → G be any functions. The σ-algebra, B, generated
by the sets (atoms) of the form {x ∈ G | ϕ1(x) = c1, . . . , ϕk(x) = ck} are
called a factor. The conditional expectation of f is defined as

E(f | B)(x) := Ex∈B(x)f(x)

where B(x) is the atom of B containing x. If all the functions ϕi(x) i ≤ k
are of the form rTi x for some ri ∈ G the factor B generated by ϕi, i ≤ k is
called a linear factor of complexity at most k.

Let i ≤ di, ri ∈ G and Mj, j ≤ d2 be symmetric matrices in Mn(G). Let
B1 be the factor generated by the linear functions ϕi(x) = rTi x; and B2 be the
factor generated by ϕi(x) = rTi x, i ≤ d1 and ψj(x) = xTMjx, j ≤ d1. B2 is
a refinement of B1. (B1,B2) is called a factor of complexity (d1, d2). We say
that (B1,B2) has rank at least r if for all nontrivial linear combinations of
M1, . . . ,Md2 has rank at least r.

With the following lemma, we write any function f : G → [−1, 1] as a
sum of a measurable function with respect to a quadratic factor and two error
terms that are small, respectively, in L2 and U3. The strength of the lemma
is to make ∥f3∥U3 arbitrarily small by choosing a suitable growth function
ω2 with the cost of making the complexity higher.

Lemma 8. Let δ > 0 be a parameter, and let ω1, ω2 : R+ → R+ be arbi-
trary growth functions (which may depend on δ ). Let n > n0 (δ, ω1, ω2) be
sufficiently large, and let f : G → [1, 1] be a function. Let

(
B(0)
1 ,B(0)

2

)
be

a quadratic factor of complexity
(
d
(0)
1 , d

(0)
2

)
. Then there is a quadratic fac-

tor (B1,B2) with the following properties: (B1,B2) refines
(
Ḃ(0)
1 ,B(0)

2

)
; the

complexity of (B1,B2) is at most (d1, d2), where

d1, d2 ⩽ C
(
δ, ω1, ω2, d

(0)
1 , d

(0)
2

)
,
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for some fixed function C; the rank of (B1,B2) is at least ω1 (d1 + d2); there
is a decomposition f = f1 + f2 + f3, where

f1 := E (f | B2) ,
∥f2∥2 ⩽ δ,

∥f3∥U3 ⩽ 1/ω2 (d1 + d2) .

4 Main Theorem
To understand B2 measurable functions, i.e., functions that are constant on
the atoms of B2 with complexity (d1, d2), we study functions on the configu-
ration space Fd1

5 × Fd2
5 . We take r1, . . . , rd1 linearly independent and define

Γ(x) := (rT1 , . . . , r
T
d1
) and Φ(x) := (xTM1x, . . . , x

T
d2
Md2x).

Proof of theorem 1. We apply theorem 8 to 1A to obtain a decomposition
1A = f1 + f2 + f3 such that the quadratic factor (B1,B2) is with complexity
(d1, d2) di ≤ d0(α, ϵ) and the rank r is such that

r ≥ 100(log(1/ϵ) + log(1/α) + d1 + d2).

The parameter δ and ω (which only depends on α and ϵ justifying the bound
for d0) will be specified afterwards. We define the n− d1 dimensional space
H := ⟨r1, . . . , rd1⟩⊥, and µH to be the normalised measure µH : 1H/E1H . To
prove the theorem, we show

Ex,d1A(x)1A(x+ d)1A(x+ 2d)1A(x+ 3d)µH(d) > (α4 − ϵ).

The left-hand side of the above expression splits into 81 parts after the sub-
stitution 1A = f1 + f2 + f3.
Claim 1. The 65 terms containing f2 has contribution ≤ ϵ/200.
Claim 2. The 65 terms containing f3 has contribution ≤ ϵ/200.

Proof. Suppose that g1 = f3, the other cases are similar. We write the term
as

Ex,dg1(x)g2(x+ d)g3(x+ 2d)g4(x+ 3d)µH(d) (1)

where g2, g3, g4 are one of the f1, f2, f3. We make the observation

1H(d) =
∑
t

1t+H(x)1t+H(x+ 2d)
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where the sum is over all cosets of H in G. By proposition 4

Ex,dg1(x)g2(x+ d)1t+H(x+ d)g3(x+ 2d)1t+H(x+ 2d)g4(x+ 3d)

≤ ∥f3∥U3 ≤ 1/ω2(d1 + d2).

Hence we bound (1) by < 52d1/ω(d1+d2). Provided that ω(m) ≥ 5m+4/ϵ.

Claim 3. As f is a B2 measurable function we define f1 : Fd1
5 × Fd2

5 such that
f1(x) = f1(Γ(x), ϕ(x)) for all x ∈ G. Since the size of the factors are not
equal, we have

Ex,df1(x)f1(x+ d)f1(x+ 2d)f1(x+ 3d)µH(d)

= E
a∈Fd1

5 ,b(1),...,b(4)∈Fd2
5

b(1)−3b(2)+3b(3)−b(4)=0

f1(a, b
(1))f1(a, b

(2))f1(a, b
(3))f1(a, b

(4))

+O(52d1+3d2−r/2).

The constraints on a and b is a result of two facts: d ∈ H and Φ(x)−3Φ(x+
d) + 3Φ(x+ 2d)− Φ(x+ 3d) = 0.

(5−2d1−3d2 +O(5−r/2))
∑
a∈Fn

5

∑
a∈Fd1

5 ,b(1),...,b(4)∈Fd2
5

b(1)−3b(2)+3b(3)−b(4)=0

f1(a, b
(1))f1(a, b

(2))

× f1(a, b
(3))f1(a, b

(4))

≥ (5−2d1−3d2 +O(5−r/2))(E
(a,b)∈Fd1

5 ×Fd2
5
f1(a, b))

4.

The last line follows from two applications of Cauchy-Schwarz.
Claim 4. E

(a,b)∈Fd1
5 ×Fd2

5
f1(a, b) = α(1 + O(5d1+d2−r/2)). This claim is a result

of the fact that atoms are close in size. After some calculations, the theorem
follows from these four claims.
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