Using Quadratic Fourier Analysis to Find 4-term Arithmetic Progressions (After Green)

Bora Çalım and Nihan Tanisali

2023

Theorem (Main Theorem)

Let $\alpha, \epsilon > 0 \in \mathbb{R}$. Then $\exists n_0 = n_0(\alpha, \epsilon)$ with the following property: Suppose that $n > n_0$ and $A \subseteq \mathbb{F}_5^n$ has density α . Then $\exists d \neq 0$ s.t. A contains $\geq (\alpha^4 - \epsilon)N$ 4APs with common difference d $(N = |\mathbb{F}_5^n| = 5^n)$.

► Best possible result (consider random set of density α)

 \blacktriangleright \mathbb{F}_5^n is a useful model setting (subspaces etc.)

Preliminaries

 \blacktriangleright Throughout, $G = \mathbb{F}_5^n$, $N = |G| = 5^n$

$$
\blacktriangleright \hat{f}(r) = \mathbb{E}_{x \in G} f(x) \omega^{r^T x}, \omega = e^{\frac{2\pi i}{5}}
$$

- \blacktriangleright Haar measure in G , counting measure in \widehat{G}
- ▶ Parseval: $||f||_2 = ||\hat{f}||_2$

First definitions

- ▶ To analyze 3APs we can use ordinary Fourier Analysis (e.g. Roth). Hard to generalize
- ▶ Approach based on Gowers norms, easier to generalize
- ▶ Multilinear forms Λ_3 and Λ_4 , defined on $f_i: G \to [-1,1]$

$$
\blacktriangleright \ \Lambda_3(f_1, f_2, f_3) = \mathbb{E}_{x,d} f_1(x) f_2(x+d) f_3(x+2d)
$$

 \blacktriangleright $\Lambda_4(f_1, f_2, f_3, f_4) = \mathbb{E}_{x,d} f_1(x) f_2(x + d) f_3(x + 2d) f_4(x + 3d)$

Gowers norms

▶ Gowers norms U^2 and U^3 , for $f: G \rightarrow [-1, 1]$:

$$
||f||_{U^2} = (\mathbb{E}_{y_1, y_2, y'_1, y'_2} f(y_1 + y_2) f(y_1 + y'_2) f(y'_1 + y_2) f(y'_1 + y'_2))^{1/4}
$$

=
$$
(\mathbb{E}_{x, h_1, h_2} f(x) f(x + h_1) f(x + h_2) f(x + h_1 + h_2))^{1/4}
$$

$$
||f||_{U^3}^8 = \mathbb{E}_{y_1, y_2, y_3, y'_1, y'_2, y'_3} f(y_1 + y_2 + y_3) f(y_1 + y_2 + y'_3) f(y_1 + y'_2 + y_3)
$$

\n
$$
\times f(y'_1 + y_2 + y_3) f(y_1 + y'_2 + y'_3) f(y'_1 + y_2 + y'_3)
$$

\n
$$
\times f(y'_1 + y'_2 + y_3) f(y'_1 + y'_2 + y'_3)
$$

\n
$$
= \mathbb{E}_{x, h_1, h_2, h_3} f(x) f(x + h_1) f(x + h_2) f(x + h_3) f(x + h_1 + h_2)
$$

\n
$$
\times f(x + h_1 + h_3) f(x + h_2 + h_3) f(x + h_1 + h_2 + h_3)
$$

▶ "average over parallelepipeds"

A Brief Look at the 3AP case

 $\blacktriangleright \Lambda_3$ is controlled by U^2 :

$$
\blacktriangleright |\Lambda_3(f_1, f_2, f_3)| \le \inf_{i=1,2,3} ||f_i||_{U^2}
$$

$$
\blacktriangleright
$$
 Large U^2 norm implies a large FC:

$$
\blacktriangleright \; \|f\|_{U^2} \geq \delta \implies \|\hat{f}\|_{\infty} \geq \delta^2
$$

Attempt to generalize to 4APs

► First can be generalized: Λ_4 is controlled by U^3 :

$$
\blacktriangleright |\Lambda_4(f_1, f_2, f_3, f_4)| \le \inf_{i=1,2,3,4} ||f_i||_{U^3}
$$

Second cannot: $f(x) = \omega^{x^T x}$.

$$
\blacktriangleright \ \|f\|_{U^3} = 1, \|\hat{f}\|_{\infty} \le N^{-1/2}
$$

 \blacktriangleright Instead of a large FC, find correlation between f and a quadratic phase

We want to prove:

Theorem (inverse result for U^3 norm on $\mathbb{F}_5^n)$ Suppose that $f: \mathbb{F}_5^n \to [-1,1]$ is a function for which $||f||_{U^3} \geq \delta$. Then there is a matrix $M\in\mathfrak{M}_n\left(\mathbb{F}_5\right)$ and a vector $r\in\mathbb{F}_5^n$ so that

$$
\left| \mathbb{E}_{x \in G} f(x) \omega^{x^T M x + r^T x} \right| \gg_{\delta} 1.
$$

" If the U^3 norm of f is large, then f correlates with a quadratic function"

Steps in proving the inverse result for U^3

- ▶ If $||f||_{U^3} \ge \delta$, then $\Delta(f; h)(x) = f(x)f(x h)$ has some "weak linearity"
- \blacktriangleright This weak linearity implies stronger linearity
- ▶ $\Delta(f;h)$ correlates with a linear phase $\mathbb{E}_h|\Delta(f;h)^\wedge(Mh+b)|^2 \gg \delta 1$
- \blacktriangleright M is necessarily "almost symmetric" and WLOG we can take M symmetric
- ▶ "Integration" of the previous statement to obtain the result

Step 1 - weak linearity from large U^3 norm

Precise statement: If $||f||_{U^3} \ge \delta$ and $|G| \gg_{\delta} 1$, then $\exists \phi : G \to \widehat{G}, S \subseteq G$ with $|S| \gg \delta |G|$ such that the following hold:

- 1. $|\Delta(f;h)^\wedge(\phi(h))| \gg_\delta 1$ for all $h \in S$
- 2. There are $\gg_{\delta} |G|^3$ quadruples $(s_1,s_2,s_3,s_4) \in S^4$ s.t. $s_1 + s_2 = s_3 + s_4$ and $\phi(s_1) + \phi(s_2) = \phi(s_3) + \phi(s_4)$

Sketch of step 1

► From
$$
||f||_{U^3} \ge \delta
$$
, algebra, Hölder, Parseval
\n⇒ $\mathbb{E}_h ||\Delta(f; h)^{\wedge}||_8^8 \ge \delta^{24}$

▶ Samorodnitsky $\implies LHS =$

$$
\sum_{r_1+r_2=r_3+r_4} \mathbb{E}_{h_1+h_2=h_3+h_4} |\Delta(f;h_1)^\wedge(r_1)|^2 \cdots |\Delta(f;h_4)^\wedge(r_4)|^2
$$
\n(1)

For
$$
h \in G
$$
, let $\Phi(h) = \{r : |\Delta(f; h)^{\wedge}(r)| \ge \delta^{50}\}$

▶ Contributions to [\(1\)](#page-10-0) where $r_i \notin \Phi(h_i)$ for some i is small

Sketch of step 1

 \blacktriangleright We have:

$$
\sum_{r_1+r_2=r_3+r_4} \mathbb{E}_{h_1+h_2=h_3+h_4} |\Delta(f;h_1)^\wedge(r_1)|^2 \cdots |\Delta(f;h_4)^\wedge(r_4)|^2 \gg \delta 1
$$

• Restrict to
$$
r_i \in \Phi(h_i)
$$
 for all *i* with small loss

$$
\blacktriangleright \exists \gg_{\delta} N^3
$$
 octuples $(h_1, r_1, \ldots, h_4, r_4)$ s.t. $h_1 + h_2 = h_3 + h_4$, $r_1 + r_2 = r_3 + r_4$, $r_i \in \Phi(h_i)$ for all i

▶ Octuples where h_i not all distinct are $\ll_{\delta} N^2$, so we can restrict to h_i all distinct with small loss

Completing step 1

- ▶ We have: $\exists \gg_{\delta} N^3$ octuples $(h_1, r_1, \ldots, h_4, r_4)$ s.t. $h_1 + h_2 = h_3 + h_4$, $r_1 + r_2 = r_3 + r_4$, $r_i \in \Phi(h_i)$ for all i , h_i 's all distinct
- ▶ Take $S = \{h : \Phi(h) \neq \emptyset\}$ ($|S| \gg_{\delta} |G|$ to allow $\gg_{\delta} N^3$ octuples)
- ▶ Choose $\phi(h)$ from $\Phi(h)$ randomly $(|\Phi(h)| \ll_{\delta} 1$ by Parseval)
- ▶ $\exists \phi$ s.t. $\exists \gg_{\delta} |G|^3$ quadruples (h_1, \ldots, h_4) s.t. $h_1 + h_2 = h_3 + h_4$, $\phi(h_1)+\phi(h_2)=\phi(h_3)+\phi(h_4)$ and $|\Delta(f;h)^\wedge(\phi(h))|\geq \delta^{50}$ for all h

Step 2 - stronger linearity from weak linearity

▶ Precise statement: If ϕ : $G \rightarrow \widehat{G}$ satisfies the conclusions (1) and (2) of step 1 (i.e., $\exists S \subseteq G, |S| \gg_{\delta} |G|$ s.t. $|\Delta(f;h) \land (\phi(h))| \gg_{\delta} 1$ for all $h\in S;$ and there are $\gg_{\delta} |G|^3$ quadruples $(s_1,s_2,s_3,s_4)\in S^4$ s.t. $s_1 + s_2 = s_3 + s_4$ and $\phi(s_1) + \phi(s_2) = \phi(s_3) + \phi(s_4)$, then $\exists \psi(x) = Mx + b$ s.t. $\psi(x) = \phi(x)$ for $\gg_{\delta} |G|$ values of $x \in S$.

Sketch of step 2

▶ Consider Γ = {(h, ϕ(h)) : h ∈ S}. Conclusion 2 & Balog-Szemerédi-Gowers $\implies \exists \Gamma' \subseteq \Gamma$ s.t. $|\Gamma'| \gg_\delta |\Gamma|$ and $|\Gamma^{\prime} + \Gamma^{\prime}| \ll_{\delta} |\Gamma^{\prime}|$ (in particular $|\Gamma^{\prime}| \gg_{\delta} |G|$)

▶ Freiman's thm. in $\mathbb{F}_p^n \implies \exists$ subspace $H \leq G \times \widehat{G} \cong \mathbb{F}_5^{2n}$ s.t. $\Gamma'\subseteq H$ and $|H|\ll_\delta |\Gamma'|$ (in particular $|H|\ll_\delta |G|)$

▶ Consider $\pi : H \to G$, $(a, b) \to a$ (projection), $S' = \pi(\Gamma')$

 $\blacktriangleright |\pi(H)| \geq |S'| \gg_{\delta} |G|$, rank-nullity \implies dim ker $(\pi) \ll_{\delta} 1$

Sketch of step 2

▶ Consider $H' = (\ker(\pi))^{\perp}$. $H = \bigcup (x + H') (\ll_{\delta} 1 \text{ cosets in } \mathbb{R})$ $x \in \ker(\pi)$ the disjoint union)

 $\blacktriangleright \pi$ injective on each coset $x + H'$

▶ Pigeonhole $\implies \exists x$ s.t. $|(x + H') \cap \Gamma'| \gg_{\delta} |\Gamma'| \gg_{\delta} |G|$

Completing step 2

- $\blacktriangleright \Gamma'' = (x + H') \cap \Gamma', S'' = \pi(\Gamma''), V = \pi(x + H')$
- ► Consider $\psi : V \to \widehat{G}, v \to \pi^{-1}(v) = (a, b) \to b$
- $\blacktriangleright \psi$ is affine (so $\psi(x) = Mx + b$) and agrees with ϕ on S'' , and $|S''|\gg_\delta |G|$

Summary of what we have so far

$$
\blacktriangleright \ |\Delta(f;h)^\wedge(\phi(h))| \gg_\delta 1 \text{ for all } h \in S, \ |S| \gg_\delta |G|
$$

$$
\blacktriangleright \phi(h) = \psi(h) = Mh + b \text{ for all } h \in S'' \subseteq S, |S''| \gg_{\delta} |G|
$$

• Corollary:
$$
\mathbb{E}_h|\Delta(f;h)^\wedge(Mh+b)|^2 \gg_\delta 1
$$

▶ Next step: "symmetry argument" to obtain $\mathrm{rank}(M - M^T) \ll_{\delta} 1$

Step 3 - symmetry argument

- ▶ Precise statement: If $\mathbb{E}_h|\Delta(f;h)^\wedge(Mh+b)|^2 \gg_\delta 1$, then rank $(D) \ll_{\delta} 1$, where $D = M - M^T$
- ▶ First step of proof: Expand hypothesis and change variables to obtain $\exists q_z : G \to \mathbb{C}, ||q_z||_{\infty} \leq 1$ s.t.

$$
|\mathbb{E}_z \mathbb{E}_{x,y} g_z(x) \overline{g_z(y)} \omega^{x^T D y}| \gg_\delta 1
$$

Sketch of step 3

\n- We have:
$$
\exists g_z : G \to \mathbb{C}, ||g_z||_{\infty} \leq 1
$$
 s.t. $|\mathbb{E}_z \mathbb{E}_{x,y} g_z(x) \overline{g_z(y)} \omega^{x^T D y}| \gg \delta 1$
\n- Pigeonhole, algebra, $D^T = -D \implies \exists g : G \to \mathbb{C}, ||g||_{\infty} \leq 1$, $|\mathbb{E}_{x,y} \overline{g(x)} g(y) \omega^{(Dx)^T y}| \gg \delta 1$
\n

 \blacktriangleright Observe: LHS = $|\mathbb{E}_x \overline{g(x)}\widehat{g}(Dx)|$

Sketch of step 3

- ▶ We have: $\exists g: G \to \mathbb{C}$, $||g||_{\infty} \leq 1$ s.t. $|\mathbb{E}_x g(x) \hat{g}(Dx)| \gg \delta 1$
- ▶ Since $||g||_{\infty} \leq 1$, $|\mathbb{E}_x \hat{g}(Dx)| \gg \delta 1$ so $\exists \gg \delta |G|$ *x*'s s.t. $|\widehat{q}(Dx)| \gg_{\delta} 1$
- ▶ But Parseval gives $\exists \ll_{\delta} 1 r$'s s.t. $|\widehat{g}(r)| \gg_{\delta} 1$
- ▶ Thus D takes \gg_{δ} |G| elements to $\ll_{\delta} 1$ elements, so $\text{rank}(D) \ll_{\delta} 1$

Getting full symmetry

- ▶ We have: $||f||_{U^3} \ge \delta \implies \mathbb{E}_h |\Delta(f; h)^\wedge (Mh + b)|^2 \gg_\delta 1$ with rank $(M - M^T) \ll_{\delta} 1$
- ▶ Derivative of quadratic phase is a *symmetric* linear phase, so we want M symmetric
- \blacktriangleright Fortunately, we can assume M is symmetric (by a probabilistic argument over cosets of $\ker(M-M^T)$, which there are $\ll_{\delta} 1$, we can take $M := \frac{1}{2}(M + M^T))$

Last step ("integration")

▶ We have: $\mathbb{E}_h|\Delta(f;h)^\wedge(Mh+b)|^2 \gg_\delta 1$ with M symmetric

- ▶ We want to "integrate" this to get the inverse result $\left| \mathbb{E}_{x \in G} f(x) \omega^{x^T M x + r^T x} \right| \gg_{\delta} 1$
- \blacktriangleright Expanding the hypothesis, changes of variable, algebra \implies $\mathbb{E}_{h,x,k}g_1(x)g_2(x-h)g_3(x-k)g_4(x-h-k) \gg \delta$ 1 with $g_1(x) = f(x)\omega^{\frac{1}{2}x^{T}Mx}, \|g_i\|_{\infty} \leq 1$

► LHS =
$$
\sum_r \hat{g_1}(r)\hat{g_2}(-r)\hat{g_3}(-r)\hat{g_4}(r)
$$

Completing the proof of the inverse result

$$
\blacktriangleright \text{ We have: } \sum_{r} \hat{g_1}(r) \hat{g_2}(-r) \hat{g_3}(-r) \hat{g_4}(r) \gg_{\delta} 1
$$

▶ Hölder
$$
\implies
$$
 $\|\widehat{g_1}\|_4 \gg_{\delta} 1$

▶ Then, by Cauchy-Schwarz and Parseval, $1 \ll_{\delta} \|\hat{g_1}^4\|_1 \leq \|\hat{g_1}^2\|_1 \|\hat{g_1}^2\|_{\infty} \leq \|\hat{g_1}^2\|_2 \|\hat{g_1}^2\|_{\infty} \leq \|\hat{g_1}^2\|_{\infty}$ \blacktriangleright $||\hat{g_1}||_{\infty} \gg_{\delta} 1$, which means

$$
\exists r \text{ s.t. } |\mathbb{E}_x f(x) \omega^{\frac{1}{2}x^T M x + r^T x}| \gg_{\delta} 1
$$

Objectives and Outline

- ▶ Definitions: factors, quadratic factors etc.
- ▶ Energy increment
- ▶ Versions of arithmetic regularity
- ▶ The main theorem.

Factors

Definition (Factors, Linear Factors, Conditional Expectation)

- ► Let $\phi_1, \ldots, \phi_k : G \to G$ be any functions. The σ -algebra, \mathcal{B} , generated by the sets (atoms) of the form ${x \in G \mid \phi_1(x) = c_1, \ldots, \phi_k(x) = c_k}$ are called a factor.
- ▶ If all the functions $\phi_i(x)$ $i \leq k$ are of the form $r_i^T x$ for some $r_i \in G$ the factor ${\cal B}$ generated by $\phi_i, i \leq k$ is called a linear factor of complexity at most k .
- \blacktriangleright The conditional expectation of f is defined as

$$
\mathbb{E}(f \mid \mathcal{B})(x) := \mathbb{E}_{x \in \mathcal{B}(x)} f(x)
$$

where $\mathcal{B}(x)$ is the atom of β containing x.

Definition (Rank of a Quadratic Factor)

- ▶ Let $i \leq d_i, r_i \in G$ and $M_j, j \leq d_2$ be symmetric matrices in $\mathcal{M}_n(G)$.
- ▶ Let \mathcal{B}_1 be the factor generated by the linear functions $\phi_i(x) = r_i^T x;$ and \mathcal{B}_2 be the factor generated by $\phi_i(x) = r_i^T x, i \leq d_1$ and $\psi_j(x) = x^T M_j x, j \leq d_1.$
- \triangleright \mathcal{B}_2 is a refinement of \mathcal{B}_1 . $(\mathcal{B}_1, \mathcal{B}_2)$ is called a factor of complexity $(d_1, d_2).$
- \triangleright We say that $(\mathcal{B}_1, \mathcal{B}_2)$ has rank at least r if for all nontrivial linear combinations of M_1, \ldots, M_{d_2} has rank at least r.

Energy Increment

Lemma

Let $(\mathcal{B}_1, \mathcal{B}_2)$ be a quadratic factor of complexity at most (d_1, d_2) , and let $f:\mathbb{F}_5^n \to [-1,1]$ be a function such that

 $|| f - \mathbb{E}(f | \mathcal{B}_2) ||_{L^2} > \delta.$

Then exists a refinement $(\mathcal{B}'_1, \mathcal{B}'_2)$ of $(\mathcal{B}_1, \mathcal{B}_2)$ of complexity at most $(d_1 + 1, d_2 + 1)$ such that we have the energy increment

 $\|\mathbb{E}(f \mid \mathcal{B}'_2)\|_2^2 \ge \|\mathbb{E}(f \mid \mathcal{B}_2)\|_2^2 + c(\delta)$

where $c:(0,1) \to \mathbb{R}^+$ is some non-decreasing function of δ .

Pythagoras Theorem

Theorem Suppose that $\mathcal{B}, \mathcal{B}'$ are two σ -algebras on \mathbb{F}^n_5 such that \mathcal{B}' refines $\mathcal{B}.$ Let $f:\mathbb{F}_5^n \to [-1,1]$ be any function. Then

$$
\|\mathbb{E}(f \mid \mathcal{B}')\|_2^2 = \|\mathbb{E}(f \mid \mathcal{B})\|_2^2 + \|\mathbb{E}(f \mid \mathcal{B}') - \mathbb{E}(f \mid \mathcal{B})\|_2^2.
$$

Proof Idea.

The proof is based on the following equality

$$
(a + ld)^{2}k + (a - kd)^{2}l = a^{2}(k + l) + k(ld)^{2} + l(kd)^{2}.
$$

We assumed there is 1 atom B of B and $\mathbb{E}(f | B) = a$, and 2 atoms B_1 and B_2 of sizes k and l respectively. Then

$$
\mathbb{E}(f \mid \mathcal{B}') = \begin{cases} a - ld & \text{if } x \in B_1 \\ a - kd & \text{if } x \in B_2. \end{cases}
$$

29 / 46

Proof of the energy increment.

$$
\blacktriangleright g(x) := f(x) - \mathbb{E}(f - f | \mathcal{B}_2).
$$

▶

 \blacktriangleright By the inverse result for the U^3 norm, there exists non decreasing c such that

$$
|\mathbb{E}_x g(x)\omega^{x^T M x + r^T x}| \ge c(\delta).
$$

- \blacktriangleright The linear part and the quadratic part $r^T x$, $x^T M x$ induces a quadratic factor $(\tilde{\mathcal{B}}_1, \tilde{\mathcal{B}}_2)$ of complexity $(1,1).$
- $\blacktriangleright \; x^TMx + r^Tx$ is $\tilde{\mathcal{B}}_2$ -measurable. Hence

$$
\mathbb{E}_x g(x) \omega^{x^T M x + r^T x} = \mathbb{E}_x \mathbb{E}(g \mid \tilde{\mathcal{B}}_2)(x) \omega^{x^T M x + r^T x}.
$$

$$
\|\mathbb{E}(g \mid \tilde{\mathcal{B}}_2)\|_1 \ge c(\delta).
$$

• Define $\mathcal{B}'_1 := \mathcal{B}_1 \vee \tilde{\mathcal{B}}_1$ and $\mathcal{B}'_2 := \mathcal{B}_2 \vee \tilde{\mathcal{B}}_2$.

 \blacktriangleright Finally we get the chain of inequalities:

$$
\left\| \mathbb{E} \left(f \mid \mathcal{B}'_2 \right) \right\|_2^2 - \left\| \mathbb{E} \left(f \mid \mathcal{B}_2 \right) \right\|_2^2 = \left\| \mathbb{E} \left(f \mid \mathcal{B}'_2 \right) - \mathbb{E} \left(f \mid \mathcal{B}_2 \right) \right\|_2^2
$$

\n
$$
= \left\| \mathbb{E} \left(g \mid \mathcal{B}'_2 \right) \right\|_2^2
$$

\n
$$
\geq \left\| \mathbb{E} \left(g \mid \widetilde{\mathcal{B}}_2 \right) \right\|_2^2
$$

\n
$$
\geq \left\| \mathbb{E} \left(g \mid \widetilde{\mathcal{B}}_2 \right) \right\|_1^2
$$

\n
$$
\geq c(\delta)
$$

by Pythagoras theorem, the definition of g and the fact that \mathcal{B}'_2 refines $\widetilde{\mathcal{B}}_2$, and finally Cauchy Schwarz.

Quadratic Koopman-von Neumann decomposition

Theorem Let $\left(\mathcal{B}_1^{(0)},\mathcal{B}_2^{(0)}\right)$ be a quadratic factor with complexity at most $\left(d_1^{(0)}, d_2^{(0)}\right)$. Let $f:\mathbb{F}_5^n\to [-1,1]$ be a function and let $\delta>0$ be a parameter. "Then there is a quadratic factor $(\mathcal{B}_1, \mathcal{B}_2)$ of complexity at most $\left(d_1^{(0)}+O_\delta(1), d_2^{(0)}+O_\delta(1) \right)$ which refines $\left(\mathcal{B}_1^{(0)}, \mathcal{B}_2^{(0)}\right)$, and such that

$$
f=f_1+f_2
$$

where

$$
f_1:=\mathbb{E}\left(f\mid \mathcal{B}_2\right)
$$

and

 $||f_2||_{L^{13}} \leqslant δ.$

Proof.

$$
\triangleright \text{ Start with } (\mathcal{B}_1, \mathcal{B}_2) = \left(\mathcal{B}_1^{(0)}, \mathcal{B}_2^{(0)}\right). \text{ If}
$$

$$
\|f - \mathbb{E}(f \mid \mathcal{B}_2)\|_{U^3} \ge \delta,
$$

energy increment is applicable to the factor $(\mathcal{B}_1, \mathcal{B}_2)$.

- \triangleright We will get $(\mathcal{B}_1, \mathcal{B}_2)$ whose complexity is increased by $(1, 1)$, and $\Vert \mathbb{E}(f \mid \mathcal{B}_2) \Vert$ is increased by $c(\delta)$.
- \triangleright By the choice of non-decreasing c, this algorithm must be applicable at most $1/c(\delta)$ times.
- **▶ Algorithm is not applicable** \iff **the conditions of energy increment** are not satisfied.

▶ For some \mathcal{B}_2 ,

$$
||f - \mathbb{E}(f \mid \mathcal{B}_2)||_{U^3} < \delta.
$$

Theorem (Arithmetic regularity lemma for U^3 -I)

Let $\delta > 0$ be a parameter, and let $\omega : \mathbb{R}^+ \to \mathbb{R}^+$ be an arbitrary growth function (which may depend on δ). Suppose that $n > n_0(\omega, \delta)$ is sufficiently large, and let $f : \mathbb{F}_5^n \to [-1,1]$ be a function. Let $\left(\mathcal{B}_1^{(0)},\mathcal{B}_2^{(0)}\right)$ be a quadratic factor of complexity $\left(d_1^{(0)},d_2^{(0)}\right)$. Then there is $C=C\left(\delta,\omega,d_1^{(0)},d_2^{(0)}\right)$ and a quadratic factor $(\mathcal{B}_1,\mathcal{B}_2)$ which refines $\left(\mathcal{B}_1^{(0)},\mathcal{B}_2^{(0)}\right)$ and has complexity at most $(d,d),\,d\leqslant C$, together with a decomposition

$$
f = f_1 + f_2 + f_3
$$

where

$$
f_1 := \mathbb{E} (f | \mathcal{B}_2),
$$

$$
||f_2||_2 \leq \delta
$$

and

 $||f_3||_{L^{13}} \leqslant 1/\omega(d).$

Theorem (Arithmetic regularity lemma for U^3 -II)

Let $\delta > 0$ be a parameter, and let $\omega_1, \omega_2 : \mathbb{R}_+ \to \mathbb{R}_+$ be arbitrary growth functions (which may depend on δ). Let $n > n_0$ ($\delta, \omega_1, \omega_2$) be sufficiently large, and let $f:\mathbb{F}_{5}^{n}\rightarrow[-1,1]$ be a function. Let $\left(\mathcal{B}_{1}^{(0)},\mathcal{B}_{2}^{(0)}\right)$ be a quadratic factor of complexity $\left(d_1^{(0)}, d_2^{(0)} \right)$. Then there is a quadratic factor $(\mathcal{B}_1, \mathcal{B}_2)$ with the following properties: (1) $(\mathcal{B}_1, \mathcal{B}_2)$ refines $\left(\mathcal{B}_1^{(0)},\mathcal{B}_2^{(0)}\right)$; (2) The complexity of $(\mathcal{B}_1,\mathcal{B}_2)$ is at most (d_1,d_2) , where

$$
d_1, d_2 \leq C\left(\delta, \omega_1, \omega_2, d_1^{(0)}, d_2^{(0)}\right)
$$

for some fixed function C; (3) The rank of $(\mathcal{B}_1, \mathcal{B}_2)$ is at least ω_1 $(d_1 + d_2)$; (4) There is a decomposition $f = f_1 + f_2 + f_3$, where

$$
f_1 := \mathbb{E} (f | \mathcal{B}_2),
$$

$$
||f_2||_2 \leq \delta
$$

and

$$
||f_3||_{U^3}\leqslant 1/\omega_2\left(d_1+d_2\right).
$$

- \blacktriangleright The first proof is a result of the iterative application of Koopman-von Neumann decomposition.
- \triangleright We get a small δ in terms of the complexity of the quadratic factor.
- ▶ The second proof utilizes the fact that every quadratic factor can be refined to a "high-rank" quadratic factor whose complexities are "close".

Theorem (Main Theorem)

Let $\alpha, \epsilon > 0 \in \mathbb{R}$. Then $\exists n_0 = n_0(\alpha, \epsilon)$ with the following property: Suppose that $n > n_0$ and $A \subseteq \mathbb{F}_5^n$ has density α . Then $\exists d \neq 0$ s.t. A contains $\geq (\alpha^4 - \epsilon)N$ 4APs with common difference d $(N = |\mathbb{F}_5^n| = 5^n)$. ▶ Applying Arithmetic regularity II to 1_A where $A \subset \mathbb{F}_5^n$. We get a decomposition $1_A = f_1 + f_2 + f_3$ where

$$
f_1 := \mathbb{E} (f | \mathcal{B}_2),
$$

$$
||f_2||_2 \leq \delta
$$

and

$$
\|f_3\|_{U^3}\leqslant 1/\omega\left(d_1+d_2\right)
$$

and the quadratic factor $(\mathcal{B}_1, \mathcal{B}_2)$ is of complexity (d_1, d_2) , where $d_i < d_0(\alpha, \epsilon)$ and rank r satisfying

$$
r > 100(log(1/\epsilon) + log(1/\alpha) + d_1 + d_2).
$$

 \blacktriangleright The parameters δ and ω will be specified later.

- \blacktriangleright Let $r_1^T x, \ldots, r_{d_1}^T x$ be the linear functions in \mathcal{B}_1 .
- ▶ Define $H := \langle r_1, \ldots, r_{d_1} \rangle^T$. Let 1_H be the characteristic function of H, and let μ_H be the normalised measure on H,

$$
\mu_H:=1_H/\mathbb{E} 1_H
$$

 \blacktriangleright What we will prove is:

.

 $E_{x,d}1_A(x)1_A(x+d)1_A(x+2d)1_A(x+3d)\mu_H(d) \geq \alpha^4 - \epsilon,$

which implies the main theorem for some $d \in H$ by an averaging argument.

 \triangleright We split the left-hand side of (4.9) into 81 parts by substituting $1_4 = f_1 + f_2 + f_3.$

 \blacktriangleright The terms containing f_2 : Some of the terms are of the form

$$
\mathbb{E}_{x,d}g_1(x)g_2(x+d)g_3(x+2d)g_4(x+3d)\mu_H(d),
$$

where $q_1 = f_2$. ▶ Set $F(x) := \mathbb{E}_d q_2(x+d)$ $q_3(x+2d)q_4(x+3d)\mu_H(d)$. It follows that $|\mathbb{E}_{x,d}g_1(x)g_2(x+d)g_3(x+2d)g_4(x+3d)\mu'_H(d)| \leq |\mathbb{E}_xg_1(x)F(x)|$ \leq $||f_2||_1 \leq ||f_2||_2$,

as $||F||_{\infty} \leq 1$. This proves the claim provided that $\delta \leq \epsilon/200$.

▶ The terms containing f_3 can be bounded by $\epsilon/200$ using generalized von Neumann.

▶ Making the other 80 factors small, we focus on the main term:

$$
\mathbb{E}_{x,d} f_1(x) f_1(x+d) f_1(x+2d) f_1(x+3d) \mu_H(d).
$$

▶ For f_1 : \mathbb{F}_5^n \rightarrow \mathbb{C} is a \mathcal{B}_2 -measurable function then we write $\mathbf{f}_1: \mathbb{F}_5^{d_1} \times \mathbb{F}_5^{d_2} \to \mathbb{C}$ for the function which satisfies

 $f_1(x) = \mathbf{f}_1(\Gamma(x), \Phi(x))$

where $\Gamma(x) := (r_1^T x, ..., r_{d_1}^T x)$ and $\Phi(x) := (x^T M_1 x, ..., x^T M_{d_2} x)$. ▶ We will show

$$
\mathbb{E}_{(a,b)\in\mathbb{F}_5^{d_1}\times\mathbb{F}_5^{d_2}}\mathbf{f}_1(a,b)=\alpha\left(1+O\left(5^{2d_1+2d_2-r/2}\right)\right).
$$

- \triangleright Clearly if the atoms were of the same size we had the equality without the error term.
- \blacktriangleright We will now study the atoms' size.

Lemma

Suppose that $(\mathcal{B}_1,\mathcal{B}_2)$ has mank at least $r.$ Let $(a,b)\in\mathbb{F}_5^{d_1}\times\mathbb{F}_5^{d_2}.$ Then the probability that a randomly chosen $x \in \mathbb{F}_5^n$ has $\Gamma(x) = a$ and $\Phi(x) = b$ is $5^{-d_1-d_2} + O(5^{-r/2})$.

Proof.
\n
$$
\Gamma(x) = a \iff r_j^T x = a_j \text{ for all } j.
$$

$$
5^{-d_1-d_2} \mathbb{E}_x \prod_{i=1}^{d_1} \underbrace{\left(\sum_{\mu_i \in \mathbb{F}_5} \omega^{\mu_i \left(r_1^T x - a_j\right)}\right)}_{\text{[J]}} \prod_{j=1}^{d_2} \left(\sum_{\lambda_j \in \mathbb{F}_5} \omega^{\lambda_j \left(x^T M_j x - b_j\right)}\right),
$$

$$
\left\{\n\begin{aligned}\n5 & \text{if } r_1^T x - a_j = 0 \\
0 & \text{otherwise}\n\end{aligned}\n\right.
$$

$$
5^{-d_1-d_2} \sum_{\mu_i,\lambda} \omega^{-\lambda_1 b_1 - \dots - \lambda_{d_2} b_{d_2} - \mu_1 p_1 - \dots - \mu_{d_1} a_{d_1}}
$$

$$
\mathbb{E}_x \omega^{x^T} (\lambda_1 M_1 + \dots + \lambda_{d_2} M_{d_2}) x + (\mu_1 r_1 + \dots + \mu_{d_1} r_{d_1})^T x.
$$

 \blacktriangleright We have

▶

$$
\operatorname{rk}(\lambda_1 M_1 + \cdots + \lambda_{d_2} M_{d_2}) \geq r.
$$

By Gauss sum estimate every term in (4.1) in which the λ_i are not all zero is bounded by $5^{-d_1-d_2-r/2}$.

Among the remaining terms, the linear independence of the r_i guarantees that the only term that does not vanish is that with $\mu_1 = \cdots = \mu_{d_1} = 0.$

Lemma

Suppose that $(\mathcal{B}_1, \mathcal{B}_2)$ has rank at least r. Suppose that $\big(a^{(1)},b^{(1)}\big),\ldots,\big(a^{(4)},b^{(4)}\big) \in \mathbb{F}_5^{d_1} \times \mathbb{F}_5^{d_2}.$ Suppose that a 4-term progression $(x, x + d, x + 2d, x + 3d) \in (\mathbb{F}_5^n)^4$ is chosen at random. If

 $a^{(1)}, a^{(2)}, a^{(3)}, a^{(4)}$ are in arithmetic progression

and

$$
b^{(1)} - 3b^{(2)} + 3b^{(3)} - b^{(4)} = 0
$$

then the probability that $\Gamma(x+id) = a^{(i)}, \Phi(x+id) = b^{(i)}$ for $i=1,2,3,4$ is $5^{-2d_1-3d_2}+$ $O\left(5^{-r/2}\right)$. Otherwise, it is zero. Proof is omitted.

▶ We will continue to the proof of the main theorem. We have

$$
\mathbb{E}_{(a,b)\in\mathbb{F}_5^{d_1}\times\mathbb{F}_5^{d_2}}\mathbf{f}_1(a,b)=\alpha\left(1+O\left(5^{2d_1+2d_2-r/2}\right)\right)
$$

since $(\sum w_{a,b} {\bf f}_1(a,b)) = \alpha$ where $w_{a,b}$ represents (number of elements in the atom specified by a, b /(all elements). As

$$
\max |(\sum w_{a,b} - \frac{1}{5^{d_1+d_2}})| \sum \mathbf{f}_1(a,b) \le O(5^{2d_1+2d_2-r/2}).
$$

 $(f_1(a, b) \leq 5^{d_1+d_2}$), the result follows.

▶ Lastly we show

$$
\mathbb{E}_{x,d} f_1(x) f_1(x+d) f_1(x+2d) f_1(x+3d) \mu_H(d)
$$
\n
$$
= \mathbb{E}_{a \in \mathbb{F}_5^{d_1}, b^{(1)}, \dots, b^{(4)} \in \mathbb{F}_5^{d_2}} \mathbf{f}_1(a, b^{(1)}) \mathbf{f}_1(a, b^{(2)}) \mathbf{f}_1(a, b^{(3)}) \mathbf{f}_1(a, b^{(4)})
$$
\n
$$
+ O\left(5^{2d_1+3d_2-r/2}\right).
$$