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Theorem (Main Theorem)

Let a,e > 0 € R. Then Ing = no(e, €) with the following property:
Suppose that n > ng and A C F{ has density o. Then 3d # 0 s.t. A
contains > (a* — €)N 4APs with common difference d (N = |F2| = 5").

» Best possible result (consider random set of density «)

» FP is a useful model setting (subspaces etc.)
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Preliminaries

» Throughout, G = F2, N = |G| = 5"

T 27

> f(T) = Eajegf(.%')wT Tw=e5

» Haar measure in G, counting measure in G

> Parseval: ||f]2 = [|fl-
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First definitions

» To analyze 3APs we can use ordinary Fourier Analysis (e.g. Roth).
Hard to generalize

» Approach based on Gowers norms, easier to generalize

» Multilinear forms Az and Ay, defined on f; : G — [-1,1]

v

As(f1, f2, 3) = Bgafi(z) fo(x + d) f3(x + 2d)

> Au(f1, f2, f3, fa) = Eg af1 (%) fo(x + d) f3(x + 2d) fa(z + 3d)
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Gowers norms

» Gowers norms U? and U3, for f: G — [-1,1]:

I flloz = By ot f Wr + y2) £+ 95) F WL+ y2) F(5 + yh)
= (Eo,hy o f (@) f(@ + h1) f(x + ha) f(x + by + b))/

F1Ts = By yoyantapows S (W1 + 32 +y3) f (1 + 2 + 95) F(y1 + 5 + ys)
X f(y1 +y2 +ys) f (1 + v+ y3) F(yr + y2 + v3)
X f(Yh +ya+ys)f (v +y2 +y3)
=Ky hy hohs S (@) f(x + ha) f(x + ha) f(x + hs) f(x + h1 + ha)

X f(@+h1+ hs) f(x + ha + hg) f(z + hi + ha + h3)

> "average over parallelepipeds
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A Brief Look at the 3AP case

» Az is controlled by U?:

> |As(f1, f2, f3)] < inf || fillv>
i=1,2,3
» Large U? norm implies a large FC:

> (I fllve =6 = || flleo > 02
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Attempt to generalize to 4APs

» First can be generalized: Ay is controlled by U3:

> |As(f1, [, f3, f)l < inf | fills

i=1,2,3,4

» Second cannot: f(x) = w®

v

Ifllos =1, | flleo < N71/2

» Instead of a large FC, find correlation between f and a quadratic
phase

7/46



We want to prove:

Theorem (inverse result for U® norm on F?)

Suppose that f : F — [—1,1] is a function for which || f||ys = 0. Then
there is a matrix M € M, (F5) and a vector r € F{ so that

Execf(x)wa:TMw+rTm

>s 1.

"If the U3 norm of f is large, then f correlates with a quadratic function”
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Steps in proving the inverse result for U3

> If | fllus > 6, then A(f;h)(z) = f(x)f(z — h) has some "weak
linearity”

» This weak linearity implies stronger linearity
» A(f;h) correlates with a linear phase Ey|A(f; h)(Mh + b)|? >5 1

» M is necessarily "almost symmetric” and WLOG we can take M
symmetric

» "Integration” of the previous statement to obtain the result
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Step 1 - weak linearity from large U? norm

Precise statement: If || f||ys > ¢ and |G| > 1, then 3¢ : G — G,5CG
with |S| >5 |G| such that the following hold:

1. |A(f; R)N(h)| 5 1 for all h e S

2. There are 5 |G| quadruples (s1, s2, $3,54) € S* s.t.
514 52 = 53+ 54 and ¢(s1) + ¢(s2) = P(s3) + P(54)
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Sketch of step 1
» From ||f|lzs > 6, algebra, Holder, Parseval
= Enl|A(f;h)M§ > 6

» Samorodnitsky = LHS =

ST Envthahernd AU )N 0P A ha) () 2
r1+ro=rz+ry
(1)

> For h € G, let ®(h) = {r: |A(f;h)"(r)| > 6°°}

> Contributions to (1) where r; ¢ ®(h;) for some i is small
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Sketch of step 1

» We have:

> Enthamngrn AU ) ()P JA(S 3 ha) (ra) P 5 1
r1+re=r3z+ra
» Restrict to r; € ®(h;) for all i with small loss

> 34 N3 octuples (hy,71,...,h4,74) s.t. by + ho = h3 + hy,
r14+ 1o =13+ 14, i € ®(hy) for all i

» Octuples where h; not all distinct are <5 N2, so we can restrict to
h; all distinct with small loss
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Completing step 1

» We have: 3> N2 octuples (hy,71,...,hs,74) S.t.
hi+hyo=hg+hgy, r1+ro=r3+ry r; € q)(hl) for all 4, h;'s all
distinct

> Take S = {h: ®(h) # 0} (|S| >4 |G| to allow >5 N octuples)
» Choose ¢(h) from ®(h) randomly (|®(h)| <s 1 by Parseval)

> Jps.t. A>5 |G|3 quadruples (hh RN h4) s.t. h1 + ho = hs + hy,
¢(h1) + ¢(h2) = ¢(hs) + d(ha) and |A(f; 1) (¢(h))] = 6°° for all h
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Step 2 - stronger linearity from weak linearity

> Precise statement: If ¢ : G — G satisfies the conclusions (1) and
(2) of step 1 (i.e., IS C G, |S| >5 |G| s.t. |A(f;h)"(¢(h))] >51
for all h € S; and there are >>5 |G|? quadruples (s1, 52, 83, 54) € S*
s.t. 81+ 82 = 83+ 84 and P(s1) + Pd(s2) = B(s3) + #(s4)), then
Fp(x) = Mz + b s.t. P(x) = ¢(x) for >5 |G| values of x € S.
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Sketch of step 2

» Consider I' = {(h, ¢(h)) : h € S}. Conclusion 2 &
Balog-Szemerédi-Gowers = 3IV CI' s.t. |I| > |T'| and
[T + T <5 |T’| (in particular [TV| >5 |G])

> Freiman's thm. in F? = 3 subspace H < G x G = F?" s.t.
I C H and |H| <5 |T’] (in particular |H| <5 |G])

» Consider 7 : H — G, (a,b) — a (projection), S’ = n(I")

> |[7(H)| > |5 > |G|, rank-nullity = dimker(7) <5 1
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Sketch of step 2

» Consider H' = (ker(w))*. H = U (x+ H') (<5 1 cosets in
x€ker(m)
the disjoint union)

» 7 injective on each coset x + H'

» Pigeonhole = Jz s.t. |(z+ H')NTY| >5 |TV| > |G|
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Completing step 2

> I = (x4 H)NT, 8" =x("), V = n(z + H')
> Consider 1 : V — G, v — 7~ 1(v) = (a,b) = b

> ¢ is affine (so ¢(x) = Mx + b) and agrees with ¢ on S”, and
15" > |G|
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Summary of what we have so far

> |A(f;R)N(h))| 5 1 forall h € S, |S| > |G

> ¢(h) =(h) = Mh+bforall he S” C S,

S| >4 1€
» Corollary: Ex|A(f;h)N(Mh+b)|2 >51

» Next step: "symmetry argument” to obtain rank(M — M7T) < 1
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Step 3 - symmetry argument

» Precise statement: If E,|A(f; h) (Mh +b)|? > 1, then
rank(D) <s 1, where D = M — MT

» First step of proof: Expand hypothesis and change variables to
obtain 3g, : G = C, ||g2]|ec <1 s.t.

E.E, g.(2)g (g)a® Y] >4 1
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Sketch of step 3

» We have: 3g, : G = C, ||g2]|cc < 1s.t.

E.E, 9. (2)g- (g)a® Y] >4 1

» Pigeonhole, algebra, DT = <1,

By g(@)g(y)w P Y] >4 1

» Observe: LHS = |Ezm§(Dx)|
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Sketch of step 3

> We have: 3g: G — C, ||g]loo < 1s.t. |Epg(z)g(Dx)| >5 1

> Since [|g]|eo <1,

9(D)| > 1

E,g(Dz)| >5 1 so 3> |G| z's s.t.

> But Parseval gives 3 <5 1 r's s.t. [g(r)] >s 1

» Thus D takes >>5 |G| elements to <5 1 elements, so rank(D) <5 1
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Getting full symmetry

> We have: ||fllys > 6 = Eu|A(f; ) (Mh+b)]? >5 1 with
rank(M — MT) <5 1

» Derivative of quadratic phase is a symmetric linear phase, so we
want M symmetric

» Fortunately, we can assume M is symmetric (by a probabilistic
argument over cosets of ker(M — MT), which there are <5 1, we
can take M := $(M + MT))
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Last step ("integration”)

> We have: Ey|A(f; ) (Mh+b)|? >5 1 with M symmetric

> We want to "integrate” this to get the inverse result
Eseaf (@) MoH77) 35 1

» Expanding the hypothesis, changes of variable, algebra
= Enor91(2)g2(z — h)gs(z — k)ga(z — h — k) >5 1 with
1..T
gi(@) = f@)wz® M7 gl <1

> LHS =3, 61(r)g2(—r)g3(—=r)ga(r)
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Completing the proof of the inverse result

> We have: > g1(r)g2(=7)ga(—7)ga(r) >5 1
> Holder = ||g1]la >5 1

» Then, by Cauchy-Schwarz and Parseval,

~4 ~2) ) ~2 ~ 2y ([ ~2 ~2
1< 191711 < Ml9171llga™lleo < Ng17 1201917 Moo < 1917 Moo

» ||g1]lco =5 1, which means

I st [Eof(z)w?® Motrie s
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Objectives and Outline

» Definitions: factors, quadratic factors etc.
» Energy increment
» Versions of arithmetic regularity

» The main theorem.
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Factors

Definition (Factors, Linear Factors, Conditional Expectation)

» Let ¢1,...,0r : G — G be any functions. The o-algebra, B,
generated by the sets (atoms) of the form
{r e G| d1(x)=c1,...,¢r(x) =} are called a factor.

» If all the functions ¢;() i < k are of the form rl'z for some r; € G
the factor B generated by ¢;,7 < k is called a linear factor of
complexity at most k.

» The conditional expectation of f is defined as
E(f | B)(z) := Evep(a) f ()

where B(x) is the atom of B containing z.
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Definition (Rank of a Quadratic Factor)

» Leti <d;,r; € G and M;,j < ds be symmetric matrices in M,,(G).

> Let B; be the factor generated by the linear functions ¢;(z) = rlz;

and By be the factor generated by ¢;(z) = rl'z,i < d; and
Yi(x) = 2T Mjz, j < dy.

> B is a refinement of By. (B1,B2) is called a factor of complexity
(d1,ds).

> We say that (B1, B2) has rank at least r if for all nontrivial linear
combinations of My, ..., My, has rank at least r.
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Energy Increment

Lemma
Let (By,B2) be a quadratic factor of complexity at most (dy,ds), and let
f:F2 — [—1,1] be a function such that

If =E(f | B2)llos = 6.

Then exists a refinement (B7,By) of (By,B2) of complexity at most
(d1 4+ 1,d2 + 1) such that we have the energy increment

IECS | BN > IE(Sf | B2)l[3 + c(6)

where ¢ : (0,1) — R™ is some non-decreasing function of d.
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Pythagoras Theorem

Theorem
Suppose that B,B' are two o-algebras on F2 such that B’ refines B. Let
f:F2 — [-1,1] be any function. Then

IE(f | B3 = IE(f | B+ E(f | B) —E(f | B)ll5-
Proof Idea.
The proof is based on the following equality

(a+1d)%k + (a — kd)?l = a®(k + 1) + k(1d)? + 1(kd)>.

We assumed there is 1 atom B of B and E(f | B) = a, and 2 atoms B;
and Bs of sizes k and [ respectively. Then

a—Id ifxe B

E(le/):{a—kd if 2 € Bs.
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Proof of the energy increment.

> g(z) = f(z) —E(f - f | B2).
» By the inverse result for the U3 norm, there exists non decreasing ¢
such that . .
[Epg(z)w® M0 > ¢(6).

> The linear part and the quadratic part 77z, 27 Mx induces a
quadratic factor (B1, By) of complexity (1,1).

» 2T Max + rTx is By-measurable. Hence

Eag(z)w” Mot"e = B E(g | By)(z)w” Motr'e,

IE(g | B2)llh > c(6).
» Define B} :=B; V B; and B =By Vv Bs .
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» Finally we get the chain of inequalities:
IE(f | Bo)s — B (f | Ba)ll3 = [E(f | By) —E(f | Bo)ll;
= E(g | By)Il;
N2
> 2 o12)],
N2
>[2(o12)],
> ¢(9)

by Pythagoras theorem, the definition of g and the fact that B
refines By, and finally Cauchy Schwarz.
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Quadratic Koopman-von Neumann decomposition

Theorem

Let (By)), Béo)) be a quadratic factor with complexity at most
(d@,dé‘”). Let f : F2 — [—1,1] be a function and let 6 > 0 be a
parameter. " Then there is a quadratic factor (B1,B2) of complexity at
most (d§°) + Og(l),déo) + 05(1)) which refines (B{O), Béo)), and such

that
f=h+r
where
fr:=E(f|B2)
and

1 £2llrs < 0.
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Proof.
> Start with (B1, B2) = (850),85’)). If

If —E(f [ B2)llos = 0,

energy increment is applicable to the factor (B, Bs).

> We will get (By,B2) whose complexity is increased by (1,1), and
IE(f | B2)|| is increased by c(d).

» By the choice of non-decreasing ¢, this algorithm must be applicable
at most 1/¢() times.

» Algorithm is not applicable <= the conditions of energy increment
are not satisfied.

» For some Bs,
Hf - E(f | B2)||U3 < 4.
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Theorem (Arithmetic regularity lemma for U? -1 )

Let § > 0 be a parameter, and let w : RY — R* be an arbitrary growth
function (which may depend on ¢ ). Suppose that n > ng(w,9) is
sufficiently large, and let f : F¢ — [—1,1] be a function. Let

(BEO), Béo)) be a quadratic factor of complexity (d(lo),déo)). Then there
isC=C (6, w, dgo), dgo)) and a quadratic factor (B1, Ba) which refines

(Bgo)’ Bgo)) and has complexity at most (d,d), d < C, together with a
decomposition

f=hHh+fo+ 13
where
fi=E(f|B2),
[ fall, <6
and

[fsllys < 1/w(d).
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Theorem (Arithmetic regularity lemma for U? -11 )

Let § > 0 be a parameter, and let wi,ws : Ry — R be arbitrary growth
functions (which may depend on § ). Let n > ng (6,w1,ws) be sufficiently

large, and let f : Ff — [—1,1] be a function. Let (Bio),Béo)) be a

quadratic factor of complexity (d§°>, déo)). Then there is a quadratic
factor (B, Bz2) with the following properties: (1) (B1,Bz) refines

(BEO), Béo)); (2) The complexity of (By,Bz) is at most (dy,ds), where

d17d2 < c (67 w1, w2, dg())a déO))

for some fixed function C; (3) The rank of (By,B2) is at least
w1 (dy + d2); (4) There is a decomposition [ = f1 + fa + f3, where

fl :E(f | 62)7
[f2lly <0

and
[ f3llgs < 1/w2 (di +da).
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» The first proof is a result of the iterative application of
Koopman-von Neumann decomposition.

> We get a small ¢ in terms of the complexity of the quadratic factor.

» The second proof utilizes the fact that every quadratic factor can be
refined to a "high-rank” quadratic factor whose complexities are
"close”.
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Main Theorem

Theorem (Main Theorem)

Let a,e > 0 € R. Then Ing = no(e, €) with the following property:
Suppose that n > ng and A C Y has density o. Then 3d # 0 s.t. A
contains > (a* — €)N 4APs with common difference d (N = |F2| = 5").
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Applying Arithmetic regularity Il to 14 where A C FP. We get a
decomposition 14 = f1 + fo + f3 where

fl :]E(f | 82)7
[f2lly <6

and
[ f3llgs < 1/w(dy + d2)

and the quadratic factor (B, B2) is of complexity (di,ds2), where
d; < do(c, €) and rank r satisfying

r > 100(log(1/€) + log(1/a) + dy + d2).

The parameters § and w will be specified later.

38/46



» Let r{x,...,r] x be the linear functions in B;.

> Define H := (r1,...,rq,)" . Let 1y be the characteristic function of
H, and let ug be the normalised measure on H,

HH = ].H/ElH

What we will prove is:
Epala(z)la(z+d)la(z+2d)1a(x +3d)pp(d) > at —e,

which implies the main theorem for some d € H by an averaging
argument.

We split the left-hand side of (4.9) into 81 parts by substituting
la=fitfa+[s
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The terms containing fo: Some of the terms are of the form

E$7d91 (l‘)gg(.ﬁ + d)gg,(.l? + Qd)g4(l‘ + 3d)/lH(d),

where g1 = fo.
Set F(z) := Eqg2(x+ d) gs(x+2d)ga(x + 3d)pm(d). It follows that

[Be,q91(2)g2(z + d)gs(x + 2d)ga(x + 3d)uy (d)| < [Bpgr () F(2)]
< | f2lly < M2z

as ||F||co < 1. This proves the claim provided that § < ¢/200.

The terms containing f5 can be bounded by ¢/200 using generalized
von Neumann.
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Making the other 80 factors small, we focus on the main term:

For fi : Ff — C is a By-measurable function then we write
fi: ]Fg1 X F? — C for the function which satisfies

fi(z) = £1(T(z), (z))

where I'(z) := (r{ z,...,rj z) and ®(z) := (2" Myz, ..., 2" My, x).

We will show
B eat e i(a:8) =a (140 (305267072) ).

Clearly if the atoms were of the same size we had the equality
without the error term.

We will now study the atoms’ size.
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Lemma
Suppose that (By, By) has mank at least r. Let (a,b) € F2' x F&2. Then

the probability that a randomly chosen x € F¥ has I'(x) = a and
P(z) =bis5 4% + 0 (577/2).

Proof.

[(z) =a <= rjz=a, forall j.

dq da
5—d1—d2]E w‘“ Ty Tp— aJ w)xj(wTMjw—bj)

i=1 \u;€Fs Aj€Fs

5 ifrfe—a;=0
0 otherwise
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5*d1*d2 Z wi)‘lblf"'*Adedz TH1P1T T Hdy Gdy
FisA
]Exme(>\1M1+-<-+)\d2]\/Idz)m"'(p‘lrl_‘_“'_‘—'u’dlle)Tm.

» We have
rk ()\1M1 + -4+ /\dszz) >r.

By Gauss sum estimate every term in (4.1) in which the \; are not
all zero is bounded by 541 —d2=7/2,

» Among the remaining terms, the linear independence of the r;
guarantees that the only term that does not vanish is that with

Mlz"':Mdlzo'
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Lemma
Suppose that (By,B2) has rank at least r. Suppose that
(a®,pM) ..., (a®, b)) € F&* x F&2. Suppose that a 4 -term

progression (z,z+ d,z + 2d,z + 3d) € (]FZC-})4 is chosen at random. If
a(l), a®, a®, a® are in arithmetic progression

and
b — 362 4 363 — p® =

then the probability that T'(z + id) = o), ®(z + id) = b for
i=1,2,3,4is5 2034 O (54/2). Otherwise, it is zero.

Proof is omitted.
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» We will continue to the proof of the main theorem. We have

IE:(a b)EFfl < F&2 f (CL, b) = (1 +0 (52d1+2d27r/2>)

since (> wq pf1(a,b)) = o where wg , represents (number of
elements in the atom specified by a,b)/(all elements). As

max| () wa - 5d1+d2 )| fi(a,b) < O(5>H+247/2),

(f1(a,b) < 50Fd2 ) the result follows.
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» Lastly we show

Ey afi(z)fi(z +d) fi(z +2d) fi(x + 3d)pw (d)
= b

B ey e f1 (0,60 £ (0 BO) B (a5) £ (0,00)

bp(1) _3p(2) +3b(3> —_p®—g
_|_O (52d1 +3d2—7"/2) .
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