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Theorem (Main Theorem)
Let α, ϵ > 0 ∈ R. Then ∃n0 = n0(α, ϵ) with the following property:
Suppose that n > n0 and A ⊆ Fn

5 has density α. Then ∃d ̸= 0 s.t. A
contains ≥ (α4 − ϵ)N 4APs with common difference d (N = |Fn

5 | = 5n).

▶ Best possible result (consider random set of density α)

▶ Fn
5 is a useful model setting (subspaces etc.)
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Preliminaries

▶ Throughout, G = Fn
5 , N = |G| = 5n

▶ f̂(r) = Ex∈Gf(x)ω
rT x, ω = e

2πi
5

▶ Haar measure in G, counting measure in Ĝ

▶ Parseval: ∥f∥2 = ∥f̂∥2
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First definitions

▶ To analyze 3APs we can use ordinary Fourier Analysis (e.g. Roth).
Hard to generalize

▶ Approach based on Gowers norms, easier to generalize

▶ Multilinear forms Λ3 and Λ4, defined on fi : G→ [−1, 1]

▶ Λ3(f1, f2, f3) = Ex,df1(x)f2(x+ d)f3(x+ 2d)

▶ Λ4(f1, f2, f3, f4) = Ex,df1(x)f2(x+ d)f3(x+ 2d)f4(x+ 3d)

4 / 46



Gowers norms

▶ Gowers norms U2 and U3, for f : G→ [−1, 1]:

∥f∥U2 = (Ey1,y2,y′
1,y

′
2
f(y1 + y2)f(y1 + y′2)f(y

′
1 + y2)f(y

′
1 + y′2))

1/4

= (Ex,h1,h2
f(x)f(x+ h1)f(x+ h2)f(x+ h1 + h2))

1/4

||f ||8U3 = Ey1,y2,y3,y′
1,y

′
2,y

′
3
f(y1 + y2 + y3)f(y1 + y2 + y′3)f(y1 + y′2 + y3)

× f(y′1 + y2 + y3)f(y1 + y′2 + y′3)f(y
′
1 + y2 + y′3)

× f(y′1 + y′2 + y3)f(y
′
1 + y′2 + y′3)

= Ex,h1,h2,h3f(x)f(x+ h1)f(x+ h2)f(x+ h3)f(x+ h1 + h2)

× f(x+ h1 + h3)f(x+ h2 + h3)f(x+ h1 + h2 + h3)

▶ ”average over parallelepipeds”
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A Brief Look at the 3AP case

▶ Λ3 is controlled by U2:

▶ |Λ3(f1, f2, f3)| ≤ inf
i=1,2,3

∥fi∥U2

▶ Large U2 norm implies a large FC:

▶ ∥f∥U2 ≥ δ =⇒ ∥f̂∥∞ ≥ δ2

6 / 46



Attempt to generalize to 4APs

▶ First can be generalized: Λ4 is controlled by U3:

▶ |Λ4(f1, f2, f3, f4)| ≤ inf
i=1,2,3,4

∥fi∥U3

▶ Second cannot: f(x) = ωxT x.

▶ ∥f∥U3 = 1, ∥f̂∥∞ ≤ N−1/2

▶ Instead of a large FC, find correlation between f and a quadratic
phase
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We want to prove:

Theorem (inverse result for U3 norm on Fn
5 )

Suppose that f : Fn
5 → [−1, 1] is a function for which ∥f∥U3 ⩾ δ. Then

there is a matrix M ∈ Mn (F5) and a vector r ∈ Fn
5 so that∣∣∣Ex∈Gf(x)ω

xTMx+rT x
∣∣∣ ≫δ 1.

”If the U3 norm of f is large, then f correlates with a quadratic function”
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Steps in proving the inverse result for U 3

▶ If ∥f∥U3 ≥ δ, then ∆(f ;h)(x) = f(x)f(x− h) has some ”weak
linearity”

▶ This weak linearity implies stronger linearity

▶ ∆(f ;h) correlates with a linear phase Eh|∆(f ;h)∧(Mh+ b)|2 ≫δ 1

▶ M is necessarily ”almost symmetric” and WLOG we can take M
symmetric

▶ ”Integration” of the previous statement to obtain the result
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Step 1 - weak linearity from large U 3 norm

Precise statement: If ∥f∥U3 ≥ δ and |G| ≫δ 1, then ∃ϕ : G→ Ĝ, S ⊆ G
with |S| ≫δ |G| such that the following hold:

1. |∆(f ;h)∧(ϕ(h))| ≫δ 1 for all h ∈ S

2. There are ≫δ |G|3 quadruples (s1, s2, s3, s4) ∈ S4 s.t.
s1 + s2 = s3 + s4 and ϕ(s1) + ϕ(s2) = ϕ(s3) + ϕ(s4)
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Sketch of step 1

▶ From ∥f∥U3 ≥ δ, algebra, Hölder, Parseval
=⇒ Eh∥∆(f ;h)∧∥88 ≥ δ24

▶ Samorodnitsky =⇒ LHS =∑
r1+r2=r3+r4

Eh1+h2=h3+h4
|∆(f ;h1)

∧(r1)|2 · · · |∆(f ;h4)
∧(r4)|2

(1)

▶ For h ∈ G, let Φ(h) = {r : |∆(f ;h)∧(r)| ≥ δ50}

▶ Contributions to (1) where ri /∈ Φ(hi) for some i is small
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Sketch of step 1

▶ We have:∑
r1+r2=r3+r4

Eh1+h2=h3+h4
|∆(f ;h1)

∧(r1)|2 · · · |∆(f ;h4)
∧(r4)|2 ≫δ 1

▶ Restrict to ri ∈ Φ(hi) for all i with small loss

▶ ∃ ≫δ N
3 octuples (h1, r1, . . . , h4, r4) s.t. h1 + h2 = h3 + h4,

r1 + r2 = r3 + r4, ri ∈ Φ(hi) for all i

▶ Octuples where hi not all distinct are ≪δ N
2, so we can restrict to

hi all distinct with small loss
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Completing step 1

▶ We have: ∃ ≫δ N
3 octuples (h1, r1, . . . , h4, r4) s.t.

h1 + h2 = h3 + h4, r1 + r2 = r3 + r4, ri ∈ Φ(hi) for all i, hi’s all
distinct

▶ Take S = {h : Φ(h) ̸= ∅} (|S| ≫δ |G| to allow ≫δ N
3 octuples)

▶ Choose ϕ(h) from Φ(h) randomly (|Φ(h)| ≪δ 1 by Parseval)

▶ ∃ϕ s.t. ∃ ≫δ |G|3 quadruples (h1, . . . , h4) s.t. h1 + h2 = h3 + h4,
ϕ(h1) + ϕ(h2) = ϕ(h3) + ϕ(h4) and |∆(f ;h)∧(ϕ(h))| ≥ δ50 for all h

13 / 46



Step 2 - stronger linearity from weak linearity

▶ Precise statement: If ϕ : G→ Ĝ satisfies the conclusions (1) and
(2) of step 1 (i.e., ∃S ⊆ G, |S| ≫δ |G| s.t. |∆(f ;h)∧(ϕ(h))| ≫δ 1
for all h ∈ S; and there are ≫δ |G|3 quadruples (s1, s2, s3, s4) ∈ S4

s.t. s1 + s2 = s3 + s4 and ϕ(s1) + ϕ(s2) = ϕ(s3) + ϕ(s4)), then
∃ψ(x) =Mx+ b s.t. ψ(x) = ϕ(x) for ≫δ |G| values of x ∈ S.
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Sketch of step 2

▶ Consider Γ = {(h, ϕ(h)) : h ∈ S}. Conclusion 2 &
Balog-Szemerédi-Gowers =⇒ ∃Γ′ ⊆ Γ s.t. |Γ′| ≫δ |Γ| and
|Γ′ + Γ′| ≪δ |Γ′| (in particular |Γ′| ≫δ |G|)

▶ Freiman’s thm. in Fn
p =⇒ ∃ subspace H ≤ G× Ĝ ∼= F2n

5 s.t.
Γ′ ⊆ H and |H| ≪δ |Γ′| (in particular |H| ≪δ |G|)

▶ Consider π : H → G, (a, b) → a (projection), S′ = π(Γ′)

▶ |π(H)| ≥ |S′| ≫δ |G|, rank-nullity =⇒ dimker(π) ≪δ 1
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Sketch of step 2

▶ Consider H ′ = (ker(π))⊥. H =
⋃

x∈ker(π)

(x+H ′) (≪δ 1 cosets in

the disjoint union)

▶ π injective on each coset x+H ′

▶ Pigeonhole =⇒ ∃x s.t. |(x+H ′) ∩ Γ′| ≫δ |Γ′| ≫δ |G|
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Completing step 2

▶ Γ′′ = (x+H ′) ∩ Γ′, S′′ = π(Γ′′), V = π(x+H ′)

▶ Consider ψ : V → Ĝ, v → π−1(v) = (a, b) → b

▶ ψ is affine (so ψ(x) =Mx+ b) and agrees with ϕ on S′′, and
|S′′| ≫δ |G|
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Summary of what we have so far

▶ |∆(f ;h)∧(ϕ(h))| ≫δ 1 for all h ∈ S, |S| ≫δ |G|

▶ ϕ(h) = ψ(h) =Mh+ b for all h ∈ S′′ ⊆ S, |S′′| ≫δ |G|

▶ Corollary: Eh|∆(f ;h)∧(Mh+ b)|2 ≫δ 1

▶ Next step: ”symmetry argument” to obtain rank(M −MT ) ≪δ 1
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Step 3 - symmetry argument

▶ Precise statement: If Eh|∆(f ;h)∧(Mh+ b)|2 ≫δ 1, then
rank(D) ≪δ 1, where D =M −MT

▶ First step of proof: Expand hypothesis and change variables to
obtain ∃gz : G→ C, ∥gz∥∞ ≤ 1 s.t.

|EzEx,ygz(x)gz(y)ω
xTDy| ≫δ 1
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Sketch of step 3

▶ We have: ∃gz : G→ C, ∥gz∥∞ ≤ 1 s.t.

|EzEx,ygz(x)gz(y)ω
xTDy| ≫δ 1

▶ Pigeonhole, algebra, DT = −D =⇒ ∃g : G→ C, ∥g∥∞ ≤ 1,

|Ex,yg(x)g(y)ω
(Dx)T y| ≫δ 1

▶ Observe: LHS = |Exg(x)ĝ(Dx)|

20 / 46



Sketch of step 3

▶ We have: ∃g : G→ C, ∥g∥∞ ≤ 1 s.t. |Exg(x)ĝ(Dx)| ≫δ 1

▶ Since ∥g∥∞ ≤ 1, |Exĝ(Dx)| ≫δ 1 so ∃ ≫δ |G| x’s s.t.
|ĝ(Dx)| ≫δ 1

▶ But Parseval gives ∃ ≪δ 1 r’s s.t. |ĝ(r)| ≫δ 1

▶ Thus D takes ≫δ |G| elements to ≪δ 1 elements, so rank(D) ≪δ 1
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Getting full symmetry

▶ We have: ∥f∥U3 ≥ δ =⇒ Eh|∆(f ;h)∧(Mh+ b)|2 ≫δ 1 with
rank(M −MT ) ≪δ 1

▶ Derivative of quadratic phase is a symmetric linear phase, so we
want M symmetric

▶ Fortunately, we can assume M is symmetric (by a probabilistic
argument over cosets of ker(M −MT ), which there are ≪δ 1, we
can take M := 1

2 (M +MT ))
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Last step (”integration”)

▶ We have: Eh|∆(f ;h)∧(Mh+ b)|2 ≫δ 1 with M symmetric

▶ We want to ”integrate” this to get the inverse result∣∣∣Ex∈Gf(x)ω
xTMx+rT x

∣∣∣ ≫δ 1

▶ Expanding the hypothesis, changes of variable, algebra
=⇒ Eh,x,kg1(x)g2(x− h)g3(x− k)g4(x− h− k) ≫δ 1 with

g1(x) = f(x)ω
1
2x

TMx, ∥gi∥∞ ≤ 1

▶ LHS =
∑

r ĝ1(r)ĝ2(−r)ĝ3(−r)ĝ4(r)
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Completing the proof of the inverse result

▶ We have:
∑

r ĝ1(r)ĝ2(−r)ĝ3(−r)ĝ4(r) ≫δ 1

▶ Hölder =⇒ ∥ĝ1∥4 ≫δ 1

▶ Then, by Cauchy-Schwarz and Parseval,

1 ≪δ ∥ĝ14∥1 ≤ ∥ĝ12∥1∥ĝ12∥∞ ≤ ∥ĝ12∥2∥ĝ12∥∞ ≤ ∥ĝ12∥∞

▶ ∥ĝ1∥∞ ≫δ 1, which means

∃r s.t. |Exf(x)ω
1
2x

TMx+rT x| ≫δ 1
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Objectives and Outline

▶ Definitions: factors, quadratic factors etc.

▶ Energy increment

▶ Versions of arithmetic regularity

▶ The main theorem.
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Factors

Definition (Factors, Linear Factors, Conditional Expectation)

▶ Let ϕ1, . . . , ϕk : G→ G be any functions. The σ-algebra, B,
generated by the sets (atoms) of the form
{x ∈ G | ϕ1(x) = c1, . . . , ϕk(x) = ck} are called a factor.

▶ If all the functions ϕi(x) i ≤ k are of the form rTi x for some ri ∈ G
the factor B generated by ϕi, i ≤ k is called a linear factor of
complexity at most k.

▶ The conditional expectation of f is defined as

E(f | B)(x) := Ex∈B(x)f(x)

where B(x) is the atom of B containing x.
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Definition (Rank of a Quadratic Factor)

▶ Let i ≤ di, ri ∈ G and Mj , j ≤ d2 be symmetric matrices in Mn(G).

▶ Let B1 be the factor generated by the linear functions ϕi(x) = rTi x;
and B2 be the factor generated by ϕi(x) = rTi x, i ≤ d1 and
ψj(x) = xTMjx, j ≤ d1.

▶ B2 is a refinement of B1. (B1,B2) is called a factor of complexity
(d1, d2).

▶ We say that (B1,B2) has rank at least r if for all nontrivial linear
combinations of M1, . . . ,Md2

has rank at least r.
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Energy Increment

Lemma
Let (B1,B2) be a quadratic factor of complexity at most (d1, d2), and let
f : Fn

5 → [−1, 1] be a function such that

∥f − E(f | B2)∥U3 ≥ δ.

Then exists a refinement (B′
1,B′

2) of (B1,B2) of complexity at most
(d1 + 1, d2 + 1) such that we have the energy increment

∥E(f | B′
2)∥22 ≥ ∥E(f | B2)∥22 + c(δ)

where c : (0, 1) → R+ is some non-decreasing function of δ.
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Pythagoras Theorem

Theorem
Suppose that B,B′ are two σ-algebras on Fn

5 such that B′ refines B. Let
f : Fn

5 → [−1, 1] be any function. Then

∥E (f | B′)∥22 = ∥E(f | B)∥22 + ∥E (f | B′)− E(f | B)∥22 .

Proof Idea.
The proof is based on the following equality

(a+ ld)2k + (a− kd)2l = a2(k + l) + k(ld)2 + l(kd)2.

We assumed there is 1 atom B of B and E(f | B) = a, and 2 atoms B1

and B2 of sizes k and l respectively. Then

E(f | B′) =

{
a− ld if x ∈ B1

a− kd if x ∈ B2.
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Proof of the energy increment.

▶ g(x) := f(x)− E(f − f | B2).

▶ By the inverse result for the U3 norm, there exists non decreasing c
such that

|Exg(x)ω
xTMx+rT x| ≥ c(δ).

▶ The linear part and the quadratic part rTx, xTMx induces a
quadratic factor (B̃1, B̃2) of complexity (1, 1).

▶ xTMx+ rTx is B̃2-measurable. Hence

Exg(x)ω
xTMx+rT x = ExE(g | B̃2)(x)ω

xTMx+rT x.

▶
∥E(g | B̃2)∥1 ≥ c(δ).

▶ Define B′
1 := B1 ∨ B̃1 and B′

2 := B2 ∨ B̃2 .
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▶ Finally we get the chain of inequalities:

∥E (f | B′
2)∥

2
2 − ∥E (f | B2)∥22 = ∥E (f | B′

2)− E (f | B2)∥
2
2

= ∥E (g | B′
2)∥

2
2

⩾
∥∥∥E(

g | B̃2

)∥∥∥2
2

⩾
∥∥∥E(

g | B̃2

)∥∥∥2
1

⩾ c(δ)

by Pythagoras theorem, the definition of g and the fact that B′
2

refines B̃2, and finally Cauchy Schwarz.
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Quadratic Koopman-von Neumann decomposition

Theorem
Let

(
B(0)
1 ,B(0)

2

)
be a quadratic factor with complexity at most(

d
(0)
1 , d

(0)
2

)
. Let f : Fn

5 → [−1, 1] be a function and let δ > 0 be a

parameter. ”Then there is a quadratic factor (B1,B2) of complexity at

most
(
d
(0)
1 +Oδ(1), d

(0)
2 +Oδ(1)

)
which refines

(
B(0)
1 ,B(0)

2

)
, and such

that
f = f1 + f2

where
f1 := E (f | B2)

and
∥f2∥U3 ⩽ δ.
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Proof.
▶ Start with (B1,B2) =

(
B(0)
1 ,B(0)

2

)
. If

∥f − E(f | B2)∥U3 ≥ δ,

energy increment is applicable to the factor (B1,B2).

▶ We will get (B1,B2) whose complexity is increased by (1, 1), and
∥E(f | B2)∥ is increased by c(δ).

▶ By the choice of non-decreasing c, this algorithm must be applicable
at most 1/c(δ) times.

▶ Algorithm is not applicable ⇐⇒ the conditions of energy increment
are not satisfied.

▶ For some B2,
∥f − E(f | B2)∥U3 < δ.
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Theorem (Arithmetic regularity lemma for U3 -I )
Let δ > 0 be a parameter, and let ω : R+ → R+be an arbitrary growth
function (which may depend on δ ). Suppose that n > n0(ω, δ) is
sufficiently large, and let f : Fn

5 → [−1, 1] be a function. Let(
B(0)
1 ,B(0)

2

)
be a quadratic factor of complexity

(
d
(0)
1 , d

(0)
2

)
. Then there

is C = C
(
δ, ω, d

(0)
1 , d

(0)
2

)
and a quadratic factor (B1,B2) which refines(

B(0)
1 ,B(0)

2

)
and has complexity at most (d, d), d ⩽ C, together with a

decomposition
f = f1 + f2 + f3

where
f1 := E (f | B2) ,

∥f2∥2 ⩽ δ

and
∥f3∥U3 ⩽ 1/ω(d).
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Theorem (Arithmetic regularity lemma for U3 -II )
Let δ > 0 be a parameter, and let ω1, ω2 : R+ → R+be arbitrary growth
functions (which may depend on δ ). Let n > n0 (δ, ω1, ω2) be sufficiently

large, and let f : Fn
5 → [−1, 1] be a function. Let

(
B(0)
1 ,B(0)

2

)
be a

quadratic factor of complexity
(
d
(0)
1 , d

(0)
2

)
. Then there is a quadratic

factor (B1,B2) with the following properties: (1) (B1,B2) refines(
B(0)
1 ,B(0)

2

)
; (2) The complexity of (B1,B2) is at most (d1, d2), where

d1, d2 ⩽ C
(
δ, ω1, ω2, d

(0)
1 , d

(0)
2

)
for some fixed function C; (3) The rank of (B1,B2) is at least
ω1 (d1 + d2); (4) There is a decomposition f = f1 + f2 + f3, where

f1 := E (f | B2) ,
∥f2∥2 ⩽ δ

and
∥f3∥U3 ⩽ 1/ω2 (d1 + d2) .
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▶ The first proof is a result of the iterative application of
Koopman-von Neumann decomposition.

▶ We get a small δ in terms of the complexity of the quadratic factor.

▶ The second proof utilizes the fact that every quadratic factor can be
refined to a ”high-rank” quadratic factor whose complexities are
”close”.
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Main Theorem

Theorem (Main Theorem)
Let α, ϵ > 0 ∈ R. Then ∃n0 = n0(α, ϵ) with the following property:
Suppose that n > n0 and A ⊆ Fn

5 has density α. Then ∃d ̸= 0 s.t. A
contains ≥ (α4 − ϵ)N 4APs with common difference d (N = |Fn

5 | = 5n).
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▶ Applying Arithmetic regularity II to 1A where A ⊂ Fn
5 . We get a

decomposition 1A = f1 + f2 + f3 where

f1 := E (f | B2) ,
∥f2∥2 ⩽ δ

and
∥f3∥U3 ⩽ 1/ω (d1 + d2)

and the quadratic factor (B1,B2) is of complexity (d1, d2), where
di < d0(α, ϵ) and rank r satisfying

r > 100(log(1/ϵ) + log(1/α) + d1 + d2).

▶ The parameters δ and ω will be specified later.
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▶ Let rT1 x, . . . , r
T
d1
x be the linear functions in B1.

▶ Define H := ⟨r1, . . . , rd1
⟩T . Let 1H be the characteristic function of

H, and let µH be the normalised measure on H,

µH := 1H/E1H

.

▶ What we will prove is:

Ex,d1A(x)1A(x+ d)1A(x+ 2d)1A(x+ 3d)µH(d) ⩾ α4 − ϵ,

which implies the main theorem for some d ∈ H by an averaging
argument.

▶ We split the left-hand side of (4.9) into 81 parts by substituting
1A = f1 + f2 + f3.
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▶ The terms containing f2: Some of the terms are of the form

Ex,dg1(x)g2(x+ d)g3(x+ 2d)g4(x+ 3d)µH(d),

where g1 = f2.

▶ Set F (x) := Edg2(x+ d) g3(x+2d)g4(x+3d)µH(d). It follows that

|Ex,dg1(x)g2(x+ d)g3(x+ 2d)g4(x+ 3d)µ′
H(d)| ≤ |Exg1(x)F (x)|

≤ ∥f2∥1 ≤ ∥f2∥2 ,

as ∥F∥∞ ⩽ 1. This proves the claim provided that δ ≤ ϵ/200.

▶ The terms containing f3 can be bounded by ϵ/200 using generalized
von Neumann.
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▶ Making the other 80 factors small, we focus on the main term:

Ex,df1(x)f1(x+ d)f1(x+ 2d)f1(x+ 3d)µH(d).

▶ For f1 : Fn
5 → C is a B2-measurable function then we write

f1 : Fd1
5 × Fd2

5 → C for the function which satisfies

f1(x) = f1(Γ(x),Φ(x))

where Γ(x) := (rT1 x, ..., r
T
d1
x) and Φ(x) := (xTM1x, ..., x

TMd2
x).

▶ We will show

E
(a,b)∈Fd1

5 ×Fd2
5
f1(a, b) = α

(
1 +O

(
52d1+2d2−r/2

))
.

▶ Clearly if the atoms were of the same size we had the equality
without the error term.

▶ We will now study the atoms’ size.
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Lemma
Suppose that (B1,B2) has mank at least r. Let (a, b) ∈ Fd1

5 × Fd2
5 . Then

the probability that a randomly chosen x ∈ Fn
5 has Γ(x) = a and

Φ(x) = b is 5−d1−d2 +O
(
5−r/2

)
.

Proof.
Γ(x) = a ⇐⇒ rTj x = aj for all j.

5−d1−d2Ex

d1∏
i=1

 ∑
µi∈F5

ωµi(rT1 x−aj)


︸ ︷︷ ︸5 if rT1 x− aj = 0

0 otherwise

d2∏
j=1

 ∑
λj∈F5

ωλj(xTMjx−bj)

,
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▶

5−d1−d2

∑
µi,λ

ω−λ1b1−···−λd2
bd2−µ1p1−···−µd1

ad1

Exω
xT (λ1M1+···+λd2

Md2)x+(µ1r1+···+µd1
rd1)

T
x.

▶ We have
rk (λ1M1 + · · ·+ λd2Md2) ≥ r.

By Gauss sum estimate every term in (4.1) in which the λi are not
all zero is bounded by 5−d1−d2−r/2.

▶ Among the remaining terms, the linear independence of the ri
guarantees that the only term that does not vanish is that with
µ1 = · · · = µd1

= 0.
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Lemma
Suppose that (B1,B2) has rank at least r. Suppose that(
a(1), b(1)

)
, . . . ,

(
a(4), b(4)

)
∈ Fd1

5 × Fd2
5 . Suppose that a 4 -term

progression (x, x+ d, x+ 2d, x+ 3d) ∈ (Fn
5 )

4 is chosen at random. If

a(1), a(2), a(3), a(4) are in arithmetic progression

and
b(1) − 3b(2) + 3b(3) − b(4) = 0

then the probability that Γ(x+ id) = a(i),Φ(x+ id) = b(i) for
i = 1, 2, 3, 4 is 5−2d1−3d2+ O

(
5−r/2

)
. Otherwise, it is zero.

Proof is omitted.
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▶ We will continue to the proof of the main theorem. We have

E
(a,b)∈Fd1

5 ×Fd2
5
f1(a, b) = α

(
1 +O

(
52d1+2d2−r/2

))
since (

∑
wa,bf1(a, b)) = α where wa,b represents (number of

elements in the atom specified by a, b)/(all elements). As

max |(
∑

wa,b −
1

5d1+d2
)|
∑

f1(a, b) ≤ O(52d1+2d2−r/2).

(f1(a, b) ≤ 5d1+d2 ), the result follows.
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▶ Lastly we show

Ex,df1(x)f1(x+ d)f1(x+ 2d)f1(x+ 3d)µH(d)
= E

a∈Fd1
5 ,b(1),...,b(4)∈Fd2

5

b(1)−3b(2)+3b(3)−b(4)=0

f1
(
a, b(1)

)
f1
(
a, b(2)

)
f1
(
a, b(3)

)
f1
(
a, b(4)

)
+O

(
52d1+3d2−r/2

)
.
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