Using Quadratic Fourier Analysis to Find 4-term Arithmetic Progressions (After Green)

Bora Çalım and Nihan Tanisali

2023

Theorem (Main Theorem)

Let $\alpha, \epsilon > 0 \in \mathbb{R}$. Then $\exists n_0 = n_0(\alpha, \epsilon)$ with the following property: Suppose that $n > n_0$ and $A \subseteq \mathbb{F}_5^n$ has density α . Then $\exists d \neq 0$ s.t. A contains $\geq (\alpha^4 - \epsilon)N$ 4APs with common difference d $(N = |\mathbb{F}_5^n| = 5^n)$.

• Best possible result (consider random set of density α)

• \mathbb{F}_5^n is a useful model setting (subspaces etc.)

Preliminaries

• Throughout,
$$G = \mathbb{F}_5^n$$
, $N = |G| = 5^n$

•
$$\hat{f}(r) = \mathbb{E}_{x \in G} f(x) \omega^{r^T x}, \omega = e^{\frac{2\pi i}{5}}$$

▶ Haar measure in G, counting measure in \widehat{G}

▶ Parseval: $||f||_2 = ||\hat{f}||_2$

First definitions

- To analyze 3APs we can use ordinary Fourier Analysis (e.g. Roth). Hard to generalize
- Approach based on Gowers norms, easier to generalize
- Multilinear forms Λ_3 and Λ_4 , defined on $f_i: G \to [-1, 1]$

•
$$\Lambda_3(f_1, f_2, f_3) = \mathbb{E}_{x,d} f_1(x) f_2(x+d) f_3(x+2d)$$

• $\Lambda_4(f_1, f_2, f_3, f_4) = \mathbb{E}_{x,d} f_1(x) f_2(x+d) f_3(x+2d) f_4(x+3d)$

Gowers norms

• Gowers norms U^2 and U^3 , for $f: G \to [-1, 1]$:

$$f||_{U^2} = (\mathbb{E}_{y_1, y_2, y'_1, y'_2} f(y_1 + y_2) f(y_1 + y'_2) f(y'_1 + y_2) f(y'_1 + y'_2))^{1/4}$$

= $(\mathbb{E}_{x, h_1, h_2} f(x) f(x + h_1) f(x + h_2) f(x + h_1 + h_2))^{1/4}$

$$\begin{split} ||f||_{U^3}^8 &= \mathbb{E}_{y_1, y_2, y_3, y_1', y_2', y_3'} f(y_1 + y_2 + y_3) f(y_1 + y_2 + y_3') f(y_1 + y_2' + y_3) \\ &\times f(y_1' + y_2 + y_3) f(y_1 + y_2' + y_3') f(y_1' + y_2 + y_3') \\ &\times f(y_1' + y_2' + y_3) f(y_1' + y_2' + y_3') \\ &= \mathbb{E}_{x, h_1, h_2, h_3} f(x) f(x + h_1) f(x + h_2) f(x + h_3) f(x + h_1 + h_2) \\ &\times f(x + h_1 + h_3) f(x + h_2 + h_3) f(x + h_1 + h_2 + h_3) \end{split}$$

"average over parallelepipeds"

A Brief Look at the 3AP case

• Λ_3 is controlled by U^2 :

•
$$|\Lambda_3(f_1, f_2, f_3)| \le \inf_{i=1,2,3} ||f_i||_{U^2}$$

$$\blacktriangleright \ \|f\|_{U^2} \ge \delta \implies \|\hat{f}\|_{\infty} \ge \delta^2$$

Attempt to generalize to 4APs

First can be generalized: Λ_4 is controlled by U^3 :

$$|\Lambda_4(f_1, f_2, f_3, f_4)| \le \inf_{i=1,2,3,4} ||f_i||_{U^3}$$

• Second cannot: $f(x) = \omega^{x^T x}$.

•
$$||f||_{U^3} = 1, ||\hat{f}||_{\infty} \le N^{-1/2}$$

Instead of a large FC, find correlation between f and a quadratic phase

We want to prove:

Theorem (inverse result for U^3 norm on \mathbb{F}_5^n) Suppose that $f : \mathbb{F}_5^n \to [-1, 1]$ is a function for which $||f||_{U^3} \ge \delta$. Then there is a matrix $M \in \mathfrak{M}_n(\mathbb{F}_5)$ and a vector $r \in \mathbb{F}_5^n$ so that

$$\left|\mathbb{E}_{x\in G}f(x)\omega^{x^{T}Mx+r^{T}x}\right|\gg_{\delta} 1.$$

" If the U^3 norm of f is large, then f correlates with a quadratic function"

Steps in proving the inverse result for U^3

- ▶ If $\|f\|_{U^3} \ge \delta$, then $\Delta(f;h)(x) = f(x)f(x-h)$ has some "weak linearity"
- This weak linearity implies stronger linearity
- $\Delta(f;h)$ correlates with a linear phase $\mathbb{E}_h |\Delta(f;h)^{\wedge}(Mh+b)|^2 \gg_{\delta} 1$
- $\blacktriangleright~M$ is necessarily "almost symmetric" and WLOG we can take M symmetric
- "Integration" of the previous statement to obtain the result

Step 1 - weak linearity from large U^3 norm

Precise statement: If $||f||_{U^3} \ge \delta$ and $|G| \gg_{\delta} 1$, then $\exists \phi : G \to \widehat{G}, S \subseteq G$ with $|S| \gg_{\delta} |G|$ such that the following hold:

- 1. $|\Delta(f;h)^{\wedge}(\phi(h))| \gg_{\delta} 1$ for all $h \in S$
- 2. There are $\gg_{\delta} |G|^3$ quadruples $(s_1, s_2, s_3, s_4) \in S^4$ s.t. $s_1 + s_2 = s_3 + s_4$ and $\phi(s_1) + \phi(s_2) = \phi(s_3) + \phi(s_4)$

Sketch of step 1

From
$$||f||_{U^3} \ge \delta$$
, algebra, Hölder, Parseval
 $\implies \mathbb{E}_h ||\Delta(f;h)^{\wedge}||_8^8 \ge \delta^{24}$

▶ Samorodnitsky $\implies LHS =$

$$\sum_{r_1+r_2=r_3+r_4} \mathbb{E}_{h_1+h_2=h_3+h_4} |\Delta(f;h_1)^{\wedge}(r_1)|^2 \cdots |\Delta(f;h_4)^{\wedge}(r_4)|^2$$
(1)

• For
$$h \in G$$
, let $\Phi(h) = \{r : |\Delta(f;h)^{\wedge}(r)| \ge \delta^{50}\}$

• Contributions to (1) where $r_i \notin \Phi(h_i)$ for some *i* is small

Sketch of step 1

We have:

$$\sum_{r_1+r_2=r_3+r_4} \mathbb{E}_{h_1+h_2=h_3+h_4} |\Delta(f;h_1)^{\wedge}(r_1)|^2 \cdots |\Delta(f;h_4)^{\wedge}(r_4)|^2 \gg_{\delta} 1$$

• Restrict to
$$r_i \in \Phi(h_i)$$
 for all i with small loss

►
$$\exists \gg_{\delta} N^3$$
 octuples $(h_1, r_1, \dots, h_4, r_4)$ s.t. $h_1 + h_2 = h_3 + h_4$,
 $r_1 + r_2 = r_3 + r_4$, $r_i \in \Phi(h_i)$ for all i

• Octuples where h_i not all distinct are $\ll_{\delta} N^2$, so we can restrict to h_i all distinct with small loss

Completing step 1

- ▶ We have: $\exists \gg_{\delta} N^3$ octuples $(h_1, r_1, \ldots, h_4, r_4)$ s.t. $h_1 + h_2 = h_3 + h_4$, $r_1 + r_2 = r_3 + r_4$, $r_i \in \Phi(h_i)$ for all i, h_i 's all distinct
- ▶ Take $S = \{h : \Phi(h) \neq \emptyset\}$ ($|S| \gg_{\delta} |G|$ to allow $\gg_{\delta} N^3$ octuples)
- Choose $\phi(h)$ from $\Phi(h)$ randomly ($|\Phi(h)| \ll_{\delta} 1$ by Parseval)
- ► $\exists \phi \text{ s.t. } \exists \gg_{\delta} |G|^3 \text{ quadruples } (h_1, \dots, h_4) \text{ s.t. } h_1 + h_2 = h_3 + h_4, \\ \phi(h_1) + \phi(h_2) = \phi(h_3) + \phi(h_4) \text{ and } |\Delta(f;h)^{\wedge}(\phi(h))| \ge \delta^{50} \text{ for all } h$

Step 2 - stronger linearity from weak linearity

▶ Precise statement: If $\phi: G \to \widehat{G}$ satisfies the conclusions (1) and (2) of step 1 (i.e., $\exists S \subseteq G, |S| \gg_{\delta} |G|$ s.t. $|\Delta(f;h)^{\wedge}(\phi(h))| \gg_{\delta} 1$ for all $h \in S$; and there are $\gg_{\delta} |G|^3$ quadruples $(s_1, s_2, s_3, s_4) \in S^4$ s.t. $s_1 + s_2 = s_3 + s_4$ and $\phi(s_1) + \phi(s_2) = \phi(s_3) + \phi(s_4)$), then $\exists \psi(x) = Mx + b$ s.t. $\psi(x) = \phi(x)$ for $\gg_{\delta} |G|$ values of $x \in S$.

Sketch of step 2

► Consider $\Gamma = \{(h, \phi(h)) : h \in S\}$. Conclusion 2 & Balog-Szemerédi-Gowers $\implies \exists \Gamma' \subseteq \Gamma \text{ s.t. } |\Gamma'| \gg_{\delta} |\Gamma| \text{ and } |\Gamma' + \Gamma'| \ll_{\delta} |\Gamma'| \text{ (in particular } |\Gamma'| \gg_{\delta} |G|)$

Freiman's thm. in $\mathbb{F}_p^n \Longrightarrow \exists$ subspace $H \leq G \times \widehat{G} \cong \mathbb{F}_5^{2n}$ s.t. $\Gamma' \subseteq H$ and $|H| \ll_{\delta} |\Gamma'|$ (in particular $|H| \ll_{\delta} |G|$)

• Consider $\pi: H \to G$, $(a, b) \to a$ (projection), $S' = \pi(\Gamma')$

 $|\pi(H)| \ge |S'| \gg_{\delta} |G|, \text{ rank-nullity} \implies \dim \ker(\pi) \ll_{\delta} 1$

Sketch of step 2

Consider
$$H' = (\ker(\pi))^{\perp}$$
. $H = \bigcup_{x \in \ker(\pi)} (x + H')$ ($\ll_{\delta} 1$ cosets in the disjoint union)

the disjoint union)

•
$$\pi$$
 injective on each coset $x + H'$

▶ Pigeonhole $\implies \exists x \text{ s.t. } |(x + H') \cap \Gamma'| \gg_{\delta} |\Gamma'| \gg_{\delta} |G|$

Completing step 2

- $\blacktriangleright \ \Gamma'' = (x+H') \cap \Gamma', \ S'' = \pi(\Gamma''), \ V = \pi(x+H')$
- $\blacktriangleright \ \ {\rm Consider} \ \psi: V \to \widehat{G}, \ v \to \pi^{-1}(v) = (a,b) \to b$
- ▶ ψ is affine (so $\psi(x) = Mx + b$) and agrees with ϕ on S'', and $|S''| \gg_{\delta} |G|$

Summary of what we have so far

►
$$|\Delta(f;h)^{\wedge}(\phi(h))| \gg_{\delta} 1$$
 for all $h \in S$, $|S| \gg_{\delta} |G|$

•
$$\phi(h) = \psi(h) = Mh + b$$
 for all $h \in S'' \subseteq S$, $|S''| \gg_{\delta} |G|$

• Corollary:
$$\mathbb{E}_h |\Delta(f;h)^{\wedge}(Mh+b)|^2 \gg_{\delta} 1$$

▶ Next step: "symmetry argument" to obtain $\operatorname{rank}(M - M^T) \ll_{\delta} 1$

Step 3 - symmetry argument

Precise statement: If $\mathbb{E}_h |\Delta(f;h)^{\wedge}(Mh+b)|^2 \gg_{\delta} 1$, then $\operatorname{rank}(D) \ll_{\delta} 1$, where $D = M - M^T$

First step of proof: Expand hypothesis and change variables to obtain ∃g_z : G → C, ||g_z||_∞ ≤ 1 s.t.

$$|\mathbb{E}_{z}\mathbb{E}_{x,y}g_{z}(x)\overline{g_{z}(y)}\omega^{x^{T}Dy}|\gg_{\delta} 1$$

Sketch of step 3

▶ We have:
$$\exists g_z : G \to \mathbb{C}$$
, $\|g_z\|_{\infty} \leq 1$ s.t.
 $|\mathbb{E}_z \mathbb{E}_{x,y} g_z(x) \overline{g_z(y)} \omega^{x^T D y}| \gg_{\delta} 1$
▶ Pigeonhole, algebra, $D^T = -D \implies \exists g : G \to \mathbb{C}$, $\|g\|_{\infty} \leq 1$,
 $|\mathbb{E}_{x,y} \overline{g(x)} g(y) \omega^{(Dx)^T y}| \gg_{\delta} 1$

• Observe: LHS = $|\mathbb{E}_x \overline{g(x)} \widehat{g}(Dx)|$

Sketch of step 3

- ▶ We have: $\exists g: G \to \mathbb{C}$, $\|g\|_{\infty} \leq 1$ s.t. $|\mathbb{E}_x \overline{g(x)} \widehat{g}(Dx)| \gg_{\delta} 1$
- Since $||g||_{\infty} \leq 1$, $|\mathbb{E}_x \widehat{g}(Dx)| \gg_{\delta} 1$ so $\exists \gg_{\delta} |G| \ x$'s s.t. $|\widehat{g}(Dx)| \gg_{\delta} 1$
- ▶ But Parseval gives $\exists \ll_{\delta} 1 r$'s s.t. $|\hat{g}(r)| \gg_{\delta} 1$
- ▶ Thus D takes $\gg_{\delta} |G|$ elements to $\ll_{\delta} 1$ elements, so $\operatorname{rank}(D) \ll_{\delta} 1$

Getting full symmetry

- ► We have: $||f||_{U^3} \ge \delta \implies \mathbb{E}_h |\Delta(f;h)^{\wedge}(Mh+b)|^2 \gg_{\delta} 1$ with $\operatorname{rank}(M M^T) \ll_{\delta} 1$
- Derivative of quadratic phase is a symmetric linear phase, so we want M symmetric
- Fortunately, we can assume M is symmetric (by a probabilistic argument over cosets of ker $(M M^T)$, which there are $\ll_{\delta} 1$, we can take $M := \frac{1}{2}(M + M^T)$)

Last step ("integration")

• We have: $\mathbb{E}_h |\Delta(f;h)^{\wedge}(Mh+b)|^2 \gg_{\delta} 1$ with M symmetric

- We want to "integrate" this to get the inverse result $\left|\mathbb{E}_{x\in G}f(x)\omega^{x^{T}Mx+r^{T}x}\right|\gg_{\delta} 1$
- ► Expanding the hypothesis, changes of variable, algebra $\implies \mathbb{E}_{h,x,k}g_1(x)g_2(x-h)g_3(x-k)g_4(x-h-k) \gg_{\delta} 1 \text{ with } g_1(x) = f(x)\omega^{\frac{1}{2}x^TMx}, \|g_i\|_{\infty} \leq 1$

• LHS =
$$\sum_r \widehat{g}_1(r)\widehat{g}_2(-r)\widehat{g}_3(-r)\widehat{g}_4(r)$$

Completing the proof of the inverse result

• We have:
$$\sum_r \widehat{g_1}(r)\widehat{g_2}(-r)\widehat{g_3}(-r)\widehat{g_4}(r) \gg_{\delta} 1$$

$$\blacktriangleright \text{ Hölder } \Longrightarrow \|\widehat{g_1}\|_4 \gg_{\delta} 1$$

 Then, by Cauchy-Schwarz and Parseval, 1 ≪_δ || ĝ1⁴ ||₁ ≤ || ĝ1² ||₁ || ĝ1² ||_∞ ≤ || ĝ1² || ĝ1² ||_∞ ≤ || ĝ1² || ĝ1²

$$\exists r \text{ s.t. } |\mathbb{E}_x f(x) \omega^{\frac{1}{2}x^T M x + r^T x}| \gg_{\delta} 1$$

Objectives and Outline

- Definitions: factors, quadratic factors etc.
- Energy increment
- Versions of arithmetic regularity
- ▶ The main theorem.

Factors

Definition (Factors, Linear Factors, Conditional Expectation)

- ► Let $\phi_1, \ldots, \phi_k : G \to G$ be any functions. The σ -algebra, \mathcal{B} , generated by the sets (atoms) of the form $\{x \in G \mid \phi_1(x) = c_1, \ldots, \phi_k(x) = c_k\}$ are called a factor.
- ▶ If all the functions $\phi_i(x)$ $i \leq k$ are of the form $r_i^T x$ for some $r_i \in G$ the factor \mathcal{B} generated by $\phi_i, i \leq k$ is called a linear factor of complexity at most k.
- The conditional expectation of f is defined as

$$\mathbb{E}(f \mid \mathcal{B})(x) := \mathbb{E}_{x \in \mathcal{B}(x)} f(x)$$

where $\mathcal{B}(x)$ is the atom of \mathcal{B} containing x.

Definition (Rank of a Quadratic Factor)

- Let $i \leq d_i, r_i \in G$ and $M_j, j \leq d_2$ be symmetric matrices in $\mathcal{M}_n(G)$.
- ▶ Let \mathcal{B}_1 be the factor generated by the linear functions $\phi_i(x) = r_i^T x$; and \mathcal{B}_2 be the factor generated by $\phi_i(x) = r_i^T x, i \leq d_1$ and $\psi_j(x) = x^T M_j x, j \leq d_1$.
- ▶ \mathcal{B}_2 is a refinement of \mathcal{B}_1 . $(\mathcal{B}_1, \mathcal{B}_2)$ is called a factor of complexity (d_1, d_2) .
- ► We say that (B₁, B₂) has rank at least r if for all nontrivial linear combinations of M₁,..., M_{d₂} has rank at least r.

Energy Increment

Lemma

Let $(\mathcal{B}_1, \mathcal{B}_2)$ be a quadratic factor of complexity at most (d_1, d_2) , and let $f : \mathbb{F}_5^n \to [-1, 1]$ be a function such that

 $\|f - \mathbb{E}(f \mid \mathcal{B}_2)\|_{U^3} \ge \delta.$

Then exists a refinement $(\mathcal{B}'_1, \mathcal{B}'_2)$ of $(\mathcal{B}_1, \mathcal{B}_2)$ of complexity at most $(d_1 + 1, d_2 + 1)$ such that we have the energy increment

 $\|\mathbb{E}(f \mid \mathcal{B}'_2)\|_2^2 \ge \|\mathbb{E}(f \mid \mathcal{B}_2)\|_2^2 + c(\delta)$

where $c: (0,1) \to \mathbb{R}^+$ is some non-decreasing function of δ .

Pythagoras Theorem

Theorem

Suppose that $\mathcal{B}, \mathcal{B}'$ are two σ -algebras on \mathbb{F}_5^n such that \mathcal{B}' refines \mathcal{B} . Let $f: \mathbb{F}_5^n \to [-1,1]$ be any function. Then

 $\left\|\mathbb{E}\left(f\mid\mathcal{B}'\right)\right\|_{2}^{2} = \left\|\mathbb{E}(f\mid\mathcal{B})\right\|_{2}^{2} + \left\|\mathbb{E}\left(f\mid\mathcal{B}'\right) - \mathbb{E}(f\mid\mathcal{B})\right\|_{2}^{2}.$

Proof Idea.

The proof is based on the following equality

$$(a+ld)^{2}k + (a-kd)^{2}l = a^{2}(k+l) + k(ld)^{2} + l(kd)^{2}.$$

We assumed there is 1 atom B of \mathcal{B} and $\mathbb{E}(f \mid \mathcal{B}) = a$, and 2 atoms B_1 and B_2 of sizes k and l respectively. Then

$$\mathbb{E}(f \mid \mathcal{B}') = \begin{cases} a - ld & \text{if } x \in B_1 \\ a - kd & \text{if } x \in B_2. \end{cases}$$

Proof of the energy increment.

$$\blacktriangleright g(x) := f(x) - \mathbb{E}(f - f \mid \mathcal{B}_2).$$

By the inverse result for the U³ norm, there exists non decreasing c such that

$$|\mathbb{E}_{x}g(x)\omega^{x^{T}Mx+r^{T}x}| \ge c(\delta).$$

- ► The linear part and the quadratic part r^Tx, x^TMx induces a quadratic factor (B̃₁, B̃₂) of complexity (1, 1).
- $x^T M x + r^T x$ is $\tilde{\mathcal{B}}_2$ -measurable. Hence

$$\mathbb{E}_{x}g(x)\omega^{x^{T}Mx+r^{T}x} = \mathbb{E}_{x}\mathbb{E}(g \mid \tilde{\mathcal{B}}_{2})(x)\omega^{x^{T}Mx+r^{T}x}$$

 $\|\mathbb{E}(g \mid \tilde{\mathcal{B}}_2)\|_1 \ge c(\delta).$ Define $\mathcal{B}'_1 := \mathcal{B}_1 \lor \tilde{\mathcal{B}}_1$ and $\mathcal{B}'_2 := \mathcal{B}_2 \lor \tilde{\mathcal{B}}_2$.

Finally we get the chain of inequalities:

$$\begin{split} \left\| \mathbb{E} \left(f \mid \mathcal{B}'_{2} \right) \right\|_{2}^{2} &- \left\| \mathbb{E} \left(f \mid \mathcal{B}_{2} \right) \right\|_{2}^{2} = \left\| \mathbb{E} \left(f \mid \mathcal{B}'_{2} \right) - \mathbb{E} \left(f \mid \mathcal{B}_{2} \right) \right\|_{2}^{2} \\ &= \left\| \mathbb{E} \left(g \mid \mathcal{B}'_{2} \right) \right\|_{2}^{2} \\ &\geq \left\| \mathbb{E} \left(g \mid \widetilde{\mathcal{B}}_{2} \right) \right\|_{2}^{2} \\ &\geq \left\| \mathbb{E} \left(g \mid \widetilde{\mathcal{B}}_{2} \right) \right\|_{1}^{2} \\ &\geq c(\delta) \end{split}$$

by Pythagoras theorem, the definition of g and the fact that \mathcal{B}'_2 refines $\widetilde{\mathcal{B}}_2$, and finally Cauchy Schwarz.

Quadratic Koopman-von Neumann decomposition

Theorem Let $(\mathcal{B}_1^{(0)}, \mathcal{B}_2^{(0)})$ be a quadratic factor with complexity at most $(d_1^{(0)}, d_2^{(0)})$. Let $f : \mathbb{F}_5^n \to [-1, 1]$ be a function and let $\delta > 0$ be a parameter. "Then there is a quadratic factor $(\mathcal{B}_1, \mathcal{B}_2)$ of complexity at most $(d_1^{(0)} + O_{\delta}(1), d_2^{(0)} + O_{\delta}(1))$ which refines $(\mathcal{B}_1^{(0)}, \mathcal{B}_2^{(0)})$, and such that

$$f = f_1 + f_2$$

where

$$f_1 := \mathbb{E}\left(f \mid \mathcal{B}_2\right)$$

and

 $\|f_2\|_{U^3} \leqslant \delta.$

Proof.

• Start with
$$(\mathcal{B}_1, \mathcal{B}_2) = \left(\mathcal{B}_1^{(0)}, \mathcal{B}_2^{(0)}\right)$$
. If
 $\|f - \mathbb{E}(f \mid \mathcal{B}_2)\|_{U^3} \ge \delta$.

energy increment is applicable to the factor $(\mathcal{B}_1, \mathcal{B}_2)$.

- We will get $(\mathcal{B}_1, \mathcal{B}_2)$ whose complexity is increased by (1, 1), and $\|\mathbb{E}(f \mid \mathcal{B}_2)\|$ is increased by $c(\delta)$.
- By the choice of non-decreasing c, this algorithm must be applicable at most $1/c(\delta)$ times.

For some \mathcal{B}_2 ,

$$\|f - \mathbb{E}(f \mid \mathcal{B}_2)\|_{U^3} < \delta.$$

Theorem (Arithmetic regularity lemma for U^3 -I)

Let $\delta > 0$ be a parameter, and let $\omega : \mathbb{R}^+ \to \mathbb{R}^+$ be an arbitrary growth function (which may depend on δ). Suppose that $n > n_0(\omega, \delta)$ is sufficiently large, and let $f : \mathbb{F}_5^n \to [-1,1]$ be a function. Let $\left(\mathcal{B}_1^{(0)}, \mathcal{B}_2^{(0)}\right)$ be a quadratic factor of complexity $\left(d_1^{(0)}, d_2^{(0)}\right)$. Then there is $C = C\left(\delta, \omega, d_1^{(0)}, d_2^{(0)}\right)$ and a quadratic factor $(\mathcal{B}_1, \mathcal{B}_2)$ which refines $\left(\mathcal{B}_1^{(0)}, \mathcal{B}_2^{(0)}\right)$ and has complexity at most (d, d), $d \leq C$, together with a decomposition

$$f = f_1 + f_2 + f_3$$

where

$$f_1 := \mathbb{E} \left(f \mid \mathcal{B}_2 \right), \\ \left\| f_2 \right\|_2 \leqslant \delta$$

and

 $\|f_3\|_{U^3} \leqslant 1/\omega(d).$

Theorem (Arithmetic regularity lemma for U^3 -II)

Let $\delta > 0$ be a parameter, and let $\omega_1, \omega_2 : \mathbb{R}_+ \to \mathbb{R}_+$ be arbitrary growth functions (which may depend on δ). Let $n > n_0 (\delta, \omega_1, \omega_2)$ be sufficiently large, and let $f : \mathbb{F}_5^n \to [-1, 1]$ be a function. Let $(\mathcal{B}_1^{(0)}, \mathcal{B}_2^{(0)})$ be a quadratic factor of complexity $(d_1^{(0)}, d_2^{(0)})$. Then there is a quadratic factor $(\mathcal{B}_1, \mathcal{B}_2)$ with the following properties: (1) $(\mathcal{B}_1, \mathcal{B}_2)$ refines $(\mathcal{B}_1^{(0)}, \mathcal{B}_2^{(0)})$; (2) The complexity of $(\mathcal{B}_1, \mathcal{B}_2)$ is at most (d_1, d_2) , where

$$d_1, d_2 \leqslant C\left(\delta, \omega_1, \omega_2, d_1^{(0)}, d_2^{(0)}\right)$$

for some fixed function C; (3) The rank of $(\mathcal{B}_1, \mathcal{B}_2)$ is at least $\omega_1 (d_1 + d_2)$; (4) There is a decomposition $f = f_1 + f_2 + f_3$, where

$$f_1 := \mathbb{E} \left(f \mid \mathcal{B}_2 \right), \\ \|f_2\|_2 \leqslant \delta$$

and

$$\|f_3\|_{U^3} \leq 1/\omega_2 \left(d_1 + d_2\right).$$

- The first proof is a result of the iterative application of Koopman-von Neumann decomposition.
- \blacktriangleright We get a small δ in terms of the complexity of the quadratic factor.
- The second proof utilizes the fact that every quadratic factor can be refined to a "high-rank" quadratic factor whose complexities are "close".

Theorem (Main Theorem)

Let $\alpha, \epsilon > 0 \in \mathbb{R}$. Then $\exists n_0 = n_0(\alpha, \epsilon)$ with the following property: Suppose that $n > n_0$ and $A \subseteq \mathbb{F}_5^n$ has density α . Then $\exists d \neq 0$ s.t. A contains $\geq (\alpha^4 - \epsilon)N$ 4APs with common difference d $(N = |\mathbb{F}_5^n| = 5^n)$. Applying Arithmetic regularity II to 1_A where A ⊂ 𝔽₅ⁿ. We get a decomposition 1_A = f₁ + f₂ + f₃ where

$$f_1 := \mathbb{E} \left(f \mid \mathcal{B}_2 \right), \\ \|f_2\|_2 \leqslant \delta$$

and

$$\|f_3\|_{U^3} \leqslant 1/\omega \, (d_1 + d_2)$$

and the quadratic factor $(\mathcal{B}_1, \mathcal{B}_2)$ is of complexity (d_1, d_2) , where $d_i < d_0(\alpha, \epsilon)$ and rank r satisfying

$$r > 100(log(1/\epsilon) + \log(1/\alpha) + d_1 + d_2).$$

• The parameters δ and ω will be specified later.

- Let $r_1^T x, \ldots, r_{d_1}^T x$ be the linear functions in \mathcal{B}_1 .
- Define $H := \langle r_1, \ldots, r_{d_1} \rangle^T$. Let 1_H be the characteristic function of H, and let μ_H be the normalised measure on H,

$$\mu_H := 1_H / \mathbb{E} 1_H$$

What we will prove is:

 $E_{x,d}1_A(x)1_A(x+d)1_A(x+2d)1_A(x+3d)\mu_H(d) \ge \alpha^4 - \epsilon,$

which implies the main theorem for some $d \in H$ by an averaging argument.

• We split the left-hand side of (4.9) into 81 parts by substituting $1_A = f_1 + f_2 + f_3$.

▶ The terms containing f₂: Some of the terms are of the form

$$\mathbb{E}_{x,d}g_1(x)g_2(x+d)g_3(x+2d)g_4(x+3d)\mu_H(d),$$

where $g_1 = f_2$. Set $F(x) := \mathbb{E}_d g_2(x+d) g_3(x+2d) g_4(x+3d) \mu_H(d)$. It follows that $|\mathbb{E}_{x,d}g_1(x)g_2(x+d)g_3(x+2d)g_4(x+3d)\mu'_H(d)| \le |\mathbb{E}_xg_1(x)F(x)|$ $\le ||f_2||_1 \le ||f_2||_2$,

as $||F||_{\infty} \leq 1$. This proves the claim provided that $\delta \leq \epsilon/200$.

The terms containing f_3 can be bounded by $\epsilon/200$ using generalized von Neumann.

Making the other 80 factors small, we focus on the main term:

$$\mathbb{E}_{x,d}f_1(x)f_1(x+d)f_1(x+2d)f_1(x+3d)\mu_H(d)$$

• For $f_1: \mathbb{F}_5^n \to \mathbb{C}$ is a \mathcal{B}_2 -measurable function then we write $\mathbf{f}_1: \mathbb{F}_5^{d_1} \times \mathbb{F}_5^{d_2} \to \mathbb{C}$ for the function which satisfies

 $f_1(x) = \mathbf{f}_1(\Gamma(x), \Phi(x))$

where $\Gamma(x) := (r_1^T x, ..., r_{d_1}^T x)$ and $\Phi(x) := (x^T M_1 x, ..., x^T M_{d_2} x)$. \blacktriangleright We will show

$$\mathbb{E}_{(a,b)\in\mathbb{F}_{5}^{d_{1}}\times\mathbb{F}_{5}^{d_{2}}}\mathbf{f}_{1}(a,b) = \alpha \left(1 + O\left(5^{2d_{1}+2d_{2}-r/2}\right)\right).$$

- Clearly if the atoms were of the same size we had the equality without the error term.
- We will now study the atoms' size.

Lemma

Suppose that $(\mathcal{B}_1, \mathcal{B}_2)$ has mank at least r. Let $(a, b) \in \mathbb{F}_5^{d_1} \times \mathbb{F}_5^{d_2}$. Then the probability that a randomly chosen $x \in \mathbb{F}_5^n$ has $\Gamma(x) = a$ and $\Phi(x) = b$ is $5^{-d_1-d_2} + O(5^{-r/2})$.

Proof.

$$\Gamma(x) = a \iff r_j^T x = a_j \text{ for all } j.$$

$$5^{-d_1 - d_2} \mathbb{E}_x \prod_{i=1}^{d_1} \underbrace{\left(\sum_{\mu_i \in \mathbb{F}_5} \omega^{\mu_i \left(r_1^T x - a_j\right)}\right)}_{\begin{cases} 5 & \text{if } r_1^T x - a_j = 0\\ 0 & \text{otherwise} \end{cases}} \prod_{j=1}^{d_2} \left(\sum_{\lambda_j \in \mathbb{F}_5} \omega^{\lambda_j \left(x^T M_j x - b_j\right)}\right),$$

$$5^{-d_1-d_2} \sum_{\mu_i,\lambda} \omega^{-\lambda_1 b_1 - \dots - \lambda_{d_2} b_{d_2} - \mu_1 p_1 - \dots - \mu_{d_1} a_{d_1}} \mathbb{E}_x \omega^{x^T (\lambda_1 M_1 + \dots + \lambda_{d_2} M_{d_2}) x + (\mu_1 r_1 + \dots + \mu_{d_1} r_{d_1})^T x}.$$

We have

$$\operatorname{rk}\left(\lambda_1 M_1 + \dots + \lambda_{d_2} M_{d_2}\right) \ge r.$$

By Gauss sum estimate every term in (4.1) in which the λ_i are not all zero is bounded by $5^{-d_1-d_2-r/2}$.

Among the remaining terms, the linear independence of the r_i guarantees that the only term that does not vanish is that with μ₁ = ··· = μ_{d1} = 0.

Lemma

Suppose that $(\mathcal{B}_1, \mathcal{B}_2)$ has rank at least r. Suppose that $(a^{(1)}, b^{(1)}), \ldots, (a^{(4)}, b^{(4)}) \in \mathbb{F}_5^{d_1} \times \mathbb{F}_5^{d_2}$. Suppose that a 4-term progression $(x, x+d, x+2d, x+3d) \in (\mathbb{F}_5^n)^4$ is chosen at random. If

 $a^{\left(1\right)},a^{\left(2\right)},a^{\left(3\right)},a^{\left(4\right)}$ are in arithmetic progression

and

$$b^{(1)} - 3b^{(2)} + 3b^{(3)} - b^{(4)} = 0$$

then the probability that $\Gamma(x+id) = a^{(i)}, \Phi(x+id) = b^{(i)}$ for i = 1, 2, 3, 4 is $5^{-2d_1-3d_2} + O(5^{-r/2})$. Otherwise, it is zero. Proof is omitted.

We will continue to the proof of the main theorem. We have

$$\mathbb{E}_{(a,b)\in\mathbb{F}_{5}^{d_{1}}\times\mathbb{F}_{5}^{d_{2}}}\mathbf{f}_{1}(a,b) = \alpha \left(1 + O\left(5^{2d_{1}+2d_{2}-r/2}\right)\right)$$

since $(\sum w_{a,b} \mathbf{f}_1(a,b)) = \alpha$ where $w_{a,b}$ represents (number of elements in the atom specified by a, b)/(all elements). As

$$\max |(\sum w_{a,b} - \frac{1}{5^{d_1 + d_2}})| \sum \mathbf{f}_1(a,b) \le O(5^{2d_1 + 2d_2 - r/2}).$$

 $(\mathbf{f}_1(a,b) \leq 5^{d_1+d_2}$), the result follows.

► Lastly we show

$$\begin{split} & \mathbb{E}_{x,d} f_1(x) f_1(x+d) f_1(x+2d) f_1(x+3d) \mu_H(d) \\ &= \mathbb{E}_{\substack{a \in \mathbb{F}_5^{d_1}, b^{(1)}, \dots, b^{(4)} \in \mathbb{F}_5^{d_2} \\ b^{(1)} - 3b^{(2)} + 3b^{(3)} - b^{(4)} = 0} \\ &+ O\left(5^{2d_1 + 3d_2 - r/2}\right). \end{split}$$