Amenable groups and Følner sequences

Bora Çalım

June 23, 2025

Bora Çalım

Amenable groups and Følner sequences

June 23, 2025

∃ >

• Standing assumption: G countable discrete group (for simplicity, in particular, sequences suffice rather than nets) (corollary: compact sets are exactly the finite sets)

- Standing assumption: G countable discrete group (for simplicity, in particular, sequences suffice rather than nets) (corollary: compact sets are exactly the finite sets)
- A linear functional $\sigma : \ell^{\infty}(G) \to \mathbb{C}$ s.t. $\sigma(\mathbf{1}) = 1$, and $f \ge 0$ implies $\sigma(f) \ge 0$ is called a mean on G.

- Standing assumption: G countable discrete group (for simplicity, in particular, sequences suffice rather than nets) (corollary: compact sets are exactly the finite sets)
- A linear functional $\sigma : \ell^{\infty}(G) \to \mathbb{C}$ s.t. $\sigma(\mathbf{1}) = 1$, and $f \ge 0$ implies $\sigma(f) \ge 0$ is called a mean on G.
- For $s \in G$, write $sf(\cdot)$ for the function $f(s^{-1}\cdot)$ on G. A mean σ is left-invariant if $\sigma(sf) = \sigma(f)$ for all $s \in G$ and all f.

- Standing assumption: G countable discrete group (for simplicity, in particular, sequences suffice rather than nets) (corollary: compact sets are exactly the finite sets)
- A linear functional $\sigma : \ell^{\infty}(G) \to \mathbb{C}$ s.t. $\sigma(\mathbf{1}) = 1$, and $f \ge 0$ implies $\sigma(f) \ge 0$ is called a mean on G.
- For $s \in G$, write $sf(\cdot)$ for the function $f(s^{-1}\cdot)$ on G. A mean σ is left-invariant if $\sigma(sf) = \sigma(f)$ for all $s \in G$ and all f.
- G is called amenable if there exists a left-invariant mean σ on G.

- Standing assumption: G countable discrete group (for simplicity, in particular, sequences suffice rather than nets) (corollary: compact sets are exactly the finite sets)
- A linear functional $\sigma : \ell^{\infty}(G) \to \mathbb{C}$ s.t. $\sigma(\mathbf{1}) = 1$, and $f \ge 0$ implies $\sigma(f) \ge 0$ is called a mean on G.
- For $s \in G$, write $sf(\cdot)$ for the function $f(s^{-1}\cdot)$ on G. A mean σ is left-invariant if $\sigma(sf) = \sigma(f)$ for all $s \in G$ and all f.
- G is called amenable if there exists a left-invariant mean σ on G.
- This is actually anachronistic amenability was first discovered through paradoxicality, more on that later

• Finite groups are amenable (just take the average)

- Finite groups are amenable (just take the average)
- If G is amenable, $N \lhd G$, $H \le G$, then H and G/N are amenable ("the obvious candidate" for the mean works compose the mean on G with the quotient map or the representatives of cosets)

- Finite groups are amenable (just take the average)
- If G is amenable, $N \lhd G$, $H \le G$, then H and G/N are amenable ("the obvious candidate" for the mean works compose the mean on G with the quotient map or the representatives of cosets)
- If H is amenable, H ≤ G and [G : H] < ∞, then G is amenable (average the mean on H over cosets)

- Finite groups are amenable (just take the average)
- If G is amenable, $N \lhd G$, $H \le G$, then H and G/N are amenable ("the obvious candidate" for the mean works compose the mean on G with the quotient map or the representatives of cosets)
- If H is amenable, H ≤ G and [G : H] < ∞, then G is amenable (average the mean on H over cosets)
- If N ⊲ G and N and G/N are amenable, then G is amenable (again combine the means in the obvious way) – corollary: direct product of two amenable groups is amenable

- Finite groups are amenable (just take the average)
- If G is amenable, $N \lhd G$, $H \le G$, then H and G/N are amenable ("the obvious candidate" for the mean works compose the mean on G with the quotient map or the representatives of cosets)
- If H is amenable, H ≤ G and [G : H] < ∞, then G is amenable (average the mean on H over cosets)
- If N ⊲ G and N and G/N are amenable, then G is amenable (again combine the means in the obvious way) – corollary: direct product of two amenable groups is amenable
- If H₁ ≤ H₂ ≤ H₃ ≤ ..., each H_i is amenable and G = ∪ H_i, then G is amenable (Let σ_i be a left-inv. mean on H_i. Extend trivially on G. Then each σ_i has norm at most one, so by Banach-Alaoglu they have a weak*-convergent subsequence, and the weak* limit of this is a left-inv. mean on G). corollary: if each finitely generated subgroup of G is amenable, then G is amenable

・ロト ・ 同ト ・ ヨト ・ ヨト

• We found a bunch of amenable groups. What use is this? We want to convert the functional-analytic statement of the existence of a left-inv. mean to combinatorial data.

- We found a bunch of amenable groups. What use is this? We want to convert the functional-analytic statement of the existence of a left-inv. mean to combinatorial data.
- A sequence {*F_n*} of nonempty finite subsets of *G* is called a Følner sequence if |*sF_nΔF_n*| → 0 for any *s* ∈ *G*.

- We found a bunch of amenable groups. What use is this? We want to convert the functional-analytic statement of the existence of a left-inv. mean to combinatorial data.
- This, in some sense, means that there is no element s that moves all F_n by a constant proportion (i.e. $|sF_n\Delta F_n| > c|F_n|$ for all n cannot hold).

- We found a bunch of amenable groups. What use is this? We want to convert the functional-analytic statement of the existence of a left-inv. mean to combinatorial data.
- This, in some sense, means that there is no element s that moves all F_n by a constant proportion (i.e. $|sF_n\Delta F_n| > c|F_n|$ for all n cannot hold).
- Very basic example: $[-n, n] \subseteq \mathbb{Z}$.

- We found a bunch of amenable groups. What use is this? We want to convert the functional-analytic statement of the existence of a left-inv. mean to combinatorial data.
- A sequence {*F_n*} of nonempty finite subsets of *G* is called a Følner sequence if |*sF_nΔF_n*| → 0 for any *s* ∈ *G*.
- This, in some sense, means that there is no element s that moves all F_n by a constant proportion (i.e. $|sF_n\Delta F_n| > c|F_n|$ for all n cannot hold).
- Very basic example: $[-n, n] \subseteq \mathbb{Z}$.
- In the ISEM it was proved that every abelian group has a Følner sequence.

- We found a bunch of amenable groups. What use is this? We want to convert the functional-analytic statement of the existence of a left-inv. mean to combinatorial data.
- This, in some sense, means that there is no element s that moves all F_n by a constant proportion (i.e. $|sF_n\Delta F_n| > c|F_n|$ for all n cannot hold).
- Very basic example: $[-n, n] \subseteq \mathbb{Z}$.
- In the ISEM it was proved that every abelian group has a Følner sequence.
- A question arises: does every group have a Følner sequence? In order to answer this, we need more definitions.

 Two subsets C, D of G are called equidecomposable (C ~ D) if C = ∐ C_i, D = ∐ s_iC_i, where the disjoint unions are taken over finitely many i.

- Two subsets C, D of G are called equidecomposable $(C \sim D)$ if $C = \bigsqcup C_i$, $D = \bigsqcup s_i C_i$, where the disjoint unions are taken over finitely many *i*.
- "Break C into finitely many points, rearrange and get D" (obviously this is related to the Banach-Tarski paradox).

- Two subsets C, D of G are called equidecomposable $(C \sim D)$ if $C = \bigsqcup C_i, D = \bigsqcup s_i C_i$, where the disjoint unions are taken over finitely many *i*.
- "Break C into finitely many points, rearrange and get D" (obviously this is related to the Banach-Tarski paradox).
- G is paradoxical if $G = C \sqcup D$ with $C \sim D \sim G$.

- Two subsets C, D of G are called equidecomposable (C ~ D) if C = ∐ C_i, D = ∐ s_iC_i, where the disjoint unions are taken over finitely many i.
- "Break C into finitely many points, rearrange and get D" (obviously this is related to the Banach-Tarski paradox).
- G is paradoxical if $G = C \sqcup D$ with $C \sim D \sim G$.
- The free group on two symbols F₂ = ⟨a, b⟩ is paradoxical: Consider the sets W_a, W_{a⁻¹}, W_b, W_{b⁻¹} of the elements starting with the symbol in the subscript. F₂ is the union of these four sets, and F₂ = W_a ⊔ W_a^c ~ W_a ⊔ a⁻¹W_a^c = W_a ⊔ W_{a⁻¹} and by the same reasoning F₂ ~ W_b ⊔ W_{b⁻¹}, so F₂ is paradoxical.

イロト イヨト イヨト ・

Theorem

Let G be a countable discrete group. Then the following are equivalent:

- G is amenable
- G has a Følner sequence
- G is not paradoxical

Theorem

Let G be a countable discrete group. Then the following are equivalent:

- G is amenable
- G has a Følner sequence
- G is not paradoxical
- Corollaries: Any group containing *F*₂ is not amenable (*SO*(3)!). Solvable, nilpotent, abelian groups are all amenable.

• By Gromov, any group of polynomial growth is amenable (since it has a nilpotent subgroup of finite index)

- By Gromov, any group of polynomial growth is amenable (since it has a nilpotent subgroup of finite index)
- By the Tits alternative, a f.g. matrix group is amenable iff it does not contain a copy of F_2 (since it will have a solvable subgroup of finite index).

- By Gromov, any group of polynomial growth is amenable (since it has a nilpotent subgroup of finite index)
- By the Tits alternative, a f.g. matrix group is amenable iff it does not contain a copy of F_2 (since it will have a solvable subgroup of finite index).
- There exist groups of exponential growth but are amenable (Lamplighter group Z₂ ≥ Z)

- By Gromov, any group of polynomial growth is amenable (since it has a nilpotent subgroup of finite index)
- By the Tits alternative, a f.g. matrix group is amenable iff it does not contain a copy of F_2 (since it will have a solvable subgroup of finite index).
- There exist groups of exponential growth but are amenable (Lamplighter group Z₂ ≥ Z)
- There exist non-amenable groups not containing F₂ (Olshanskii)

Take a mean σ on G, write μ(S) = σ(1_S) for S ⊆ G. This is finitely additive, left inv., and μ(G) = 1.

- Take a mean σ on G, write μ(S) = σ(1_S) for S ⊆ G. This is finitely additive, left inv., and μ(G) = 1.
- If G were paradoxical, then G = C ⊔ D with C ~ G ~ D. By definition of paradoxicality and invariance of μ,
 1 = μ(G) = μ(C) + μ(D) = μ(G) + μ(G) = 2, which is absurd.

- Take a mean σ on G, write μ(S) = σ(1_S) for S ⊆ G. This is finitely additive, left inv., and μ(G) = 1.
- If G were paradoxical, then G = C ⊔ D with C ~ G ~ D. By definition of paradoxicality and invariance of μ,
 1 = μ(G) = μ(C) + μ(D) = μ(G) + μ(G) = 2, which is absurd.
- Let F_n be a Følner sequence on G, and write f_n = 1_{Fn}/|F_n|. All of these are in ℓ¹ ⊆ (ℓ[∞])*, and have norms bounded by 1, so by Banach-Alaoglu f_n has a subsequence which weak*-converges to some f ∈ (ℓ[∞])*.

- Take a mean σ on G, write μ(S) = σ(1_S) for S ⊆ G. This is finitely additive, left inv., and μ(G) = 1.
- If G were paradoxical, then G = C ⊔ D with C ~ G ~ D. By definition of paradoxicality and invariance of μ,
 1 = μ(G) = μ(C) + μ(D) = μ(G) + μ(G) = 2, which is absurd.
- Let F_n be a Følner sequence on G, and write f_n = 1_{Fn}/|F_n|. All of these are in ℓ¹ ⊆ (ℓ[∞])*, and have norms bounded by 1, so by Banach-Alaoglu f_n has a subsequence which weak*-converges to some f ∈ (ℓ[∞])*.
- This f is a left inv. mean for G.

• I claim that there is a finite set S that expands *every* finite set by a factor of 2, i.e., |SF| > 2|F| for all finite F. Observe: it suffices to prove this with any $\lambda > 1$ in place of 2 (we can take S^k for large k).

- I claim that there is a finite set S that expands every finite set by a factor of 2, i.e., |SF| > 2|F| for all finite F. Observe: it suffices to prove this with any λ > 1 in place of 2 (we can take S^k for large k).
- Assume that this does not hold. Consider finite sets S_n increasing to G and containing the id (so that $S_nF \supseteq F$). Then for all n, I can find a finite F_n such that $|S_nF_n| < (1 + 1/2n)|F_n|$. Now, for a fixed $s \in G$, S_n contains s and s^{-1} for $n > N_s$. Now, for such n,

- I claim that there is a finite set S that expands every finite set by a factor of 2, i.e., |SF| > 2|F| for all finite F. Observe: it suffices to prove this with any λ > 1 in place of 2 (we can take S^k for large k).
- Assume that this does not hold. Consider finite sets S_n increasing to G and containing the id (so that $S_nF \supseteq F$). Then for all n, I can find a finite F_n such that $|S_nF_n| < (1 + 1/2n)|F_n|$. Now, for a fixed $s \in G$, S_n contains s and s^{-1} for $n > N_s$. Now, for such n,
- $|sF_n\Delta F_n| \le |sF_n \setminus F_n| + |F_n \setminus sF_n| = |sF_n \setminus F_n| + |s^{-1}F_n \setminus F_n| \le 2|S_nF_n \setminus F_n| \le |F_n|/n$, so F_n is Følner.

- I claim that there is a finite set S that expands *every* finite set by a factor of 2, i.e., |SF| > 2|F| for all finite F. Observe: it suffices to prove this with any $\lambda > 1$ in place of 2 (we can take S^k for large k).
- Assume that this does not hold. Consider finite sets S_n increasing to G and containing the id (so that $S_nF \supseteq F$). Then for all n, I can find a finite F_n such that $|S_nF_n| < (1+1/2n)|F_n|$. Now, for a fixed $s \in G$, S_n contains s and s^{-1} for $n > N_s$. Now, for such n,
- $|sF_n\Delta F_n| \le |sF_n \setminus F_n| + |F_n \setminus sF_n| = |sF_n \setminus F_n| + |s^{-1}F_n \setminus F_n| \le 2|S_nF_n \setminus F_n| \le |F_n|/n$, so F_n is Følner.
- This is an example of the interplay between the growth of product sets and the Følner condition. (Remark: How does *S* look like?)

• Recall: |SF| > 2|F| for all finite F. Now an ingenious argument follows.

- Recall: |SF| > 2|F| for all finite F. Now an ingenious argument follows.
- Consider G₁ ⊔ G₂, a disjoint union of two copies of G. Consider finite sets A_{g,i} where g ∈ G and i denotes which of G₁ and G₂ it comes from, that satisfy | ⋃_{x∈K1} A_{x,1} ∪ ⋃_{x∈K2} A_{x,2}| ≥ |K₁| + |K₂| for all K_i ⊆ G; and A_{g,i} ⊆ Sg for all g.

- Recall: |SF| > 2|F| for all finite F. Now an ingenious argument follows.
- Consider G₁ ⊔ G₂, a disjoint union of two copies of G. Consider finite sets A_{g,i} where g ∈ G and i denotes which of G₁ and G₂ it comes from, that satisfy | ⋃_{x∈K1} A_{x,1} ∪ ⋃_{x∈K2} A_{x,2}| ≥ |K₁| + |K₂| for all K_i ⊆ G; and A_{g,i} ⊆ Sg for all g.
- $A_{g,i} = Sg$ satisfies these conditions: $|\bigcup_{x \in K_1 \cup K_2} Sx| = |S(K_1 \cup K_2)| \ge 2|K_1 \cup K_2| \ge 2\max(|K_1|, |K_2|) \ge |K_1| + |K_2|.$

- Recall: |SF| > 2|F| for all finite F. Now an ingenious argument follows.
- Consider G₁ ⊔ G₂, a disjoint union of two copies of G. Consider finite sets A_{g,i} where g ∈ G and i denotes which of G₁ and G₂ it comes from, that satisfy | ⋃_{x∈K1} A_{x,1} ∪ ⋃_{x∈K2} A_{x,2}| ≥ |K₁| + |K₂| for all K_i ⊆ G; and A_{g,i} ⊆ Sg for all g.
- $A_{g,i} = Sg$ satisfies these conditions: $|\bigcup_{x \in K_1 \cup K_2} Sx| = |S(K_1 \cup K_2)| \ge 2|K_1 \cup K_2| \ge 2\max(|K_1|, |K_2|) \ge |K_1| + |K_2|.$
- Then by Zorn we can find a minimal family $M_{g,i}$ satisfying these (since for every chain its indexwise intersection satisfies the conditions).

• Recall: We found minimal $M_{g,i}$ such that $|\bigcup_{x \in K_1} M_{x,1} \cup \bigcup_{x \in K_2} M_{x,2}| \ge |K_1| + |K_2|$ for all finite $K_i \subseteq G$; and $M_{g,i} \subseteq Sg$ for all g

- Recall: We found minimal $M_{g,i}$ such that $|\bigcup_{x \in K_1} M_{x,1} \cup \bigcup_{x \in K_2} M_{x,2}| \ge |K_1| + |K_2|$ for all finite $K_i \subseteq G$; and $M_{g,i} \subseteq Sg$ for all g
- I claim that $|M_{g,i}| = 1$ for all g, i. Suppose $|M_{g,i}| \ge 2$. Then $\exists t_1 \neq t_2 \in M_{g,i}$. By minimality $M_{g,i} \setminus \{t_j\}$ does not satisfy the first condition for j = 1, 2. Then $\exists x_0 \notin \mathbf{K}'_j \subseteq G_1 \sqcup G_2$, such that $R_j = (M_{g,i} \setminus \{t_j\}) \cup \bigcup_{x \in \mathcal{K}'_j} M_x$ (where we see x as a pair h, i) satisfy $|R_j| < |\mathcal{K}'_j| + 1$, so $|R_j| \le |\mathcal{K}'_j|$. Now;

- Recall: We found minimal $M_{g,i}$ such that $|\bigcup_{x \in K_1} M_{x,1} \cup \bigcup_{x \in K_2} M_{x,2}| \ge |K_1| + |K_2|$ for all finite $K_i \subseteq G$; and $M_{g,i} \subseteq Sg$ for all g
- I claim that |M_{g,i}| = 1 for all g, i. Suppose |M_{g,i}| ≥ 2. Then ∃t₁ ≠ t₂ ∈ M_{g,i}. By minimality M_{g,i} \ {t_j} does not satisfy the first condition for j = 1, 2. Then ∃x₀ ∉ K'_j ⊆ G₁ ⊔ G₂, such that R_j = (M_{g,i} \ {t_j}) ∪ ∪_{x∈K'_j} M_x (where we see x as a pair h, i) satisfy |R_j| < |K'_j| + 1, so |R_j| ≤ |K'_j|. Now;
 |K'₁| + |K'₂| ≥ |R₁| + |R₂| = |R₁ ∪ R₂| + |R₁ ∩ R₂| ≥
- $|M_{g,i} \cup \bigcup_{(h,j) \in K'_1 \cup K'_2} M_{h,j}| + |\bigcup_{(h,j) \in K'_1 \cap K'_2} M_{h,j}| \ge 1 + |K'_1 \cup K'_2| + |K'_1 \cap K'_2| = 1 + |K'_1| + |K'_2|, \text{ contradiction! (key role:} R_i \text{ do not satisfy the condition but from operations on them we can obtain expressions involving <math>M_{h,j}$, allowing us to exploit).

• Each $M_{g,i}$ contains a single element, call it $m_{g,i}$.

- Each $M_{g,i}$ contains a single element, call it $m_{g,i}$.
- We know: $m_{g,i}$ are all distinct, and $m_{g,i} \in Sg$.

- Each $M_{g,i}$ contains a single element, call it $m_{g,i}$.
- We know: $m_{g,i}$ are all distinct, and $m_{g,i} \in Sg$.
- Consider $C_s = \{s^{-1}m_{g,1} : g \in G\}$, and D_s the same with 2 in place of 1. For any g, $\exists !s_g \in S$ s.t. $m_{g,1} = s_g g$, i.e., $g \in C_{s_g}$, similarly for D_s , so $\{C_s\}$ and $\{D_s\}$ form partitions of G as s runs over S.

- Each $M_{g,i}$ contains a single element, call it $m_{g,i}$.
- We know: $m_{g,i}$ are all distinct, and $m_{g,i} \in Sg$.
- Consider C_s = {s⁻¹m_{g,1} : g ∈ G}, and D_s the same with 2 in place of 1. For any g, ∃!s_g ∈ S s.t. m_{g,1} = s_gg, i.e., g ∈ C_{s_g}, similarly for D_s, so {C_s} and {D_s} form partitions of G as s runs over S.
- But: $\bigsqcup_s sC_s \sqcup \bigsqcup_s sDs = G$, so we have a paradoxical decomposition!

Recalling some ergodic theory – and where we are going

• Recall (from the lectures plus the equivalence we proved): Let G act pmp on X. Then for $f \in L^2(X)$, $\frac{1}{|F_i|} \sum_{s \in F_i} sf$ converges in L^2 (in fact, it is the projection of f in the subspace of G-inv. functions).

Recalling some ergodic theory - and where we are going

- Recall (from the lectures plus the equivalence we proved): Let G act pmp on X. Then for $f \in L^2(X)$, $\frac{1}{|F_i|} \sum_{s \in F_i} sf$ converges in L^2 (in fact, it is the projection of f in the subspace of G-inv. functions).
- We wish to upgrade this to pointwise convergence a.e. Of course a priori we have this only on a subsequence.

Recalling some ergodic theory - and where we are going

- Recall (from the lectures plus the equivalence we proved): Let G act pmp on X. Then for $f \in L^2(X)$, $\frac{1}{|F_i|} \sum_{s \in F_i} sf$ converges in L^2 (in fact, it is the projection of f in the subspace of G-inv. functions).
- We wish to upgrade this to pointwise convergence a.e. Of course a priori we have this only on a subsequence.

Theorem

Let G act pmp on X, and F_n be a Følner sequence such that $|\bigcup_{k < n} F_k^{-1} F_n| \le C|F_n|$. Then, for any $f \in L^1(G)$, $\lim_{n\to\infty} |F_n|^{-1} \sum_{s \in F_n} f(s^{-1}x)$ exists a.e.

Recalling some ergodic theory - and where we are going

- Recall (from the lectures plus the equivalence we proved): Let G act pmp on X. Then for $f \in L^2(X)$, $\frac{1}{|F_i|} \sum_{s \in F_i} sf$ converges in L^2 (in fact, it is the projection of f in the subspace of G-inv. functions).
- We wish to upgrade this to pointwise convergence a.e. Of course a priori we have this only on a subsequence.

Theorem

Let G act pmp on X, and F_n be a Følner sequence such that $|\bigcup_{k < n} F_k^{-1} F_n| \le C|F_n|$. Then, for any $f \in L^1(G)$, $\lim_{n \to \infty} |F_n|^{-1} \sum_{s \in F_n} f(s^{-1}x)$ exists a.e.

• Følner sequences that satisfy this condition are called *tempered*.

• We cannot ask for pointwise a.e. convergence along arbitrary Følner sequences:

• We cannot ask for pointwise a.e. convergence along arbitrary Følner sequences:

Theorem (Emerson)

For fixed irrational α , let \mathbb{Z} act on \mathbb{T} by $n \cdot z = z + n\alpha \mod 1$. There is a function $f \in L^1(\mathbb{T})$, a Følner sequence F_n in \mathbb{Z} such that

$$\limsup_{n} |F_{n}|^{-1} \sum_{m \in F_{n}} f(n \cdot z) = \infty$$

for all $z \in \mathbb{T}$.

• We cannot ask for pointwise a.e. convergence along arbitrary Følner sequences:

Theorem (Emerson)

For fixed irrational α , let \mathbb{Z} act on \mathbb{T} by $n \cdot z = z + n\alpha \mod 1$. There is a function $f \in L^1(\mathbb{T})$, a Følner sequence F_n in \mathbb{Z} such that

$$\limsup_{n} |F_{n}|^{-1} \sum_{m \in F_{n}} f(n \cdot z) = \infty$$

for all $z \in \mathbb{T}$.

• So even in the well-behaved setting of \mathbb{Z} , we cannot guarantee convergence *even for one point*.

• We cannot ask for pointwise a.e. convergence along arbitrary Følner sequences:

Theorem (Emerson)

For fixed irrational α , let \mathbb{Z} act on \mathbb{T} by $n \cdot z = z + n\alpha \mod 1$. There is a function $f \in L^1(\mathbb{T})$, a Følner sequence F_n in \mathbb{Z} such that

$$\limsup_{n} |F_{n}|^{-1} \sum_{m \in F_{n}} f(n \cdot z) = \infty$$

for all $z \in \mathbb{T}$.

• So even in the well-behaved setting of \mathbb{Z} , we cannot guarantee convergence *even for one point*.

• We will take
$$f(z) = z^{-1/2}$$
.

• Consider I_n as I_1 starting from 0, and has length 1/1; I_n starts at the end of I_{n-1} , and has length 1/n. Then every $z \in \mathbb{T}$ is contained in infinitely many I_n .

- Consider I_n as I_1 starting from 0, and has length 1/1; I_n starts at the end of I_{n-1} , and has length 1/n. Then every $z \in \mathbb{T}$ is contained in infinitely many I_n .
- Start with $E_n = [-n!, n!] \cap \mathbb{Z}$. Take $F_1 = E_1$, and inductively construct $F_n = E_n \cup F_{n-1} \cup D_n$, where D_n is an arbitrary set of $\lfloor n!/n^{1/4} \rfloor$ numbers *m* such that $m \cdot p_n \in [0, 1/n]$, where p_n is the starting point of I_n .

- Consider I_n as I_1 starting from 0, and has length 1/1; I_n starts at the end of I_{n-1} , and has length 1/n. Then every $z \in \mathbb{T}$ is contained in infinitely many I_n .
- Start with $E_n = [-n!, n!] \cap \mathbb{Z}$. Take $F_1 = E_1$, and inductively construct $F_n = E_n \cup F_{n-1} \cup D_n$, where D_n is an arbitrary set of $\lfloor n!/n^{1/4} \rfloor$ numbers *m* such that $m \cdot p_n \in [0, 1/n]$, where p_n is the starting point of I_n .
- It can be verified that $|F_n| \leq 3n!$.

- Consider I_n as I_1 starting from 0, and has length 1/1; I_n starts at the end of I_{n-1} , and has length 1/n. Then every $z \in \mathbb{T}$ is contained in infinitely many I_n .
- Start with $E_n = [-n!, n!] \cap \mathbb{Z}$. Take $F_1 = E_1$, and inductively construct $F_n = E_n \cup F_{n-1} \cup D_n$, where D_n is an arbitrary set of $\lfloor n!/n^{1/4} \rfloor$ numbers *m* such that $m \cdot p_n \in [0, 1/n]$, where p_n is the starting point of I_n .
- It can be verified that $|F_n| \leq 3n!$.
- In some sense, we have a perturbation of E_n, which is not too large so we still have the Følner condition, with the main contributions coming from E_n:

- Consider I_n as I_1 starting from 0, and has length 1/1; I_n starts at the end of I_{n-1} , and has length 1/n. Then every $z \in \mathbb{T}$ is contained in infinitely many I_n .
- Start with $E_n = [-n!, n!] \cap \mathbb{Z}$. Take $F_1 = E_1$, and inductively construct $F_n = E_n \cup F_{n-1} \cup D_n$, where D_n is an arbitrary set of $\lfloor n!/n^{1/4} \rfloor$ numbers *m* such that $m \cdot p_n \in [0, 1/n]$, where p_n is the starting point of I_n .
- It can be verified that $|F_n| \leq 3n!$.
- In some sense, we have a perturbation of E_n, which is not too large so we still have the Følner condition, with the main contributions coming from E_n:
- $|F_n \Delta z F_n|/|F_n| \leq |E_n \Delta z E_n|/|E_n| + |F_{n-1} \cup D_n \Delta z (F_{n-1} \cup D_n)|/|E_n|$

- Consider I_n as I_1 starting from 0, and has length 1/1; I_n starts at the end of I_{n-1} , and has length 1/n. Then every $z \in \mathbb{T}$ is contained in infinitely many I_n .
- Start with $E_n = [-n!, n!] \cap \mathbb{Z}$. Take $F_1 = E_1$, and inductively construct $F_n = E_n \cup F_{n-1} \cup D_n$, where D_n is an arbitrary set of $\lfloor n!/n^{1/4} \rfloor$ numbers *m* such that $m \cdot p_n \in [0, 1/n]$, where p_n is the starting point of I_n .
- It can be verified that $|F_n| \leq 3n!$.
- In some sense, we have a perturbation of E_n, which is not too large so we still have the Følner condition, with the main contributions coming from E_n:
- $|F_n \Delta z F_n|/|F_n| \leq |E_n \Delta z E_n|/|E_n| + |F_{n-1} \cup D_n \Delta z (F_{n-1} \cup D_n)|/|E_n|$
- First term \rightarrow 0, second term is $\leq 2(3(n-1)! + n!/n^{1/4})/2n! \rightarrow 0$. So we have a Følner sequence.

Temperedness condition is necessary - proving the pointwise divergence

• The key point is that elements of D_n make the values of f very large $(f(m \cdot z) \ge (n/2)^{1/2}$ for $z \in I_n$, $m \in D_n$). Fix z. Then for any n with $z \in I_n$

Temperedness condition is necessary - proving the pointwise divergence

- The key point is that elements of D_n make the values of f very large $(f(m \cdot z) \ge (n/2)^{1/2}$ for $z \in I_n$, $m \in D_n$). Fix z. Then for any n with $z \in I_n$
- $|F_n|^{-1} \sum_{m \in F_n} f(m \cdot z) \ge (3n!)^{-1} |D_n| (n/2)^{1/2} \ge n^{1/4} / 10$ (say).

Temperedness condition is necessary - proving the pointwise divergence

- The key point is that elements of D_n make the values of f very large $(f(m \cdot z) \ge (n/2)^{1/2}$ for $z \in I_n$, $m \in D_n$). Fix z. Then for any n with $z \in I_n$
- $|F_n|^{-1} \sum_{m \in F_n} f(m \cdot z) \ge (3n!)^{-1} |D_n| (n/2)^{1/2} \ge n^{1/4}/10$ (say).
- This proves that the lim sup is infinite.

• One might ask if every amenable group has a tempered Følner sequence, because otherwise our pointwise ergodic theorem is not applicable to all amenable groups.

- One might ask if every amenable group has a tempered Følner sequence, because otherwise our pointwise ergodic theorem is not applicable to all amenable groups.
- It turns out that this is the case. Let F_n be a Følner sequence. We will extract a tempered subsequence of this. Let $n_1 = 1$, and assume n_i are known up to n_j . Take $\tilde{F}_j = \bigcup_{i \le j-1} F_{n_i}^{-1}$. For any $g \in G$, we can find some n_{j_g} such that for $n > n_{j_g}$, $|F_n \Delta g F_n| \le |F_n|/|\tilde{F}_j|$. Take $n_j = \max_{g \in \tilde{F}_j} n_{j_g}$. Then;

- One might ask if every amenable group has a tempered Følner sequence, because otherwise our pointwise ergodic theorem is not applicable to all amenable groups.
- It turns out that this is the case. Let F_n be a Følner sequence. We will extract a tempered subsequence of this. Let $n_1 = 1$, and assume n_i are known up to n_j . Take $\tilde{F}_j = \bigcup_{i \le j-1} F_{n_i}^{-1}$. For any $g \in G$, we can find some n_{j_g} such that for $n > n_{j_g}$, $|F_n \Delta g F_n| \le |F_n|/|\tilde{F}_j|$. Take $n_j = \max_{g \in \tilde{F}_j} n_{j_g}$. Then;
- $|\tilde{F}_j F_{n_j}| \leq |F_{n_j}| + |F_{n_j} \Delta \tilde{F}_j F_{n_j}| \leq |F_{n_j}| + \sum_{g \in \tilde{F}_j} |F_{n_j} \Delta g F_{n_j}| \leq 2|F_{n_j}|.$